ColossalAI/tests/test_zero_data_parallel/common.py
Jiarui Fang 5a560a060a Feature/zero (#279)
* add zero1 (#209)

* add zero1

* add test zero1

* update zero stage 1 develop (#212)

* Implement naive zero3 (#240)

* naive zero3 works well

* add zero3 param manager

* add TODOs in comments

* add gather full param ctx

* fix sub module streams

* add offload

* fix bugs of hook and add unit tests

* fix bugs of hook and add unit tests (#252)

* add gather full param ctx

* fix sub module streams

* add offload

* fix bugs of hook and add unit tests

* polish code and add state dict hook

* fix bug

* update unit test

* refactor reconstructed zero code

* clip_grad support zero3 and add unit test

* add unit test for Zero3ParameterManager

* [WIP] initialize the shard param class

* [WIP] Yet another sharded model implementation (#274)

* [WIP] initialize the shard param class

* [WIP] Yes another implementation of shardModel. Using a better hook method.

* torch.concat -> torch.cat

* fix test_zero_level_1.py::test_zero_level_1 unitest

* remove deepspeed implementation and refactor for the reconstructed zero module

* polish zero dp unittests

Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
2022-03-11 15:50:28 +08:00

83 lines
2.2 KiB
Python

from functools import partial
from operator import imod
from colossalai.utils import checkpoint
import torch.nn as nn
import torch
from colossalai.logging import disable_existing_loggers, get_dist_logger
LOGGER = get_dist_logger()
CONFIG = dict(
fp16=dict(
mode=None,
),
zero=dict(
level=3,
verbose=False,
offload_optimizer_config=dict(
device='cpu',
pin_memory=True,
buffer_count=5,
fast_init=False
),
offload_param_config=dict(
device='cpu',
pin_memory=True,
buffer_count=5,
buffer_size=1e8,
max_in_cpu=1e9
)
),
parallel=dict(
pipeline=dict(size=1),
tensor=dict(size=1, mode=None)
)
)
def checkpoint_wrapper(module, enable=True):
if enable:
module.forward = partial(checkpoint, module.forward)
return module
class Net(nn.Module):
def __init__(self, checkpoint=False) -> None:
super().__init__()
self.fc1 = nn.Linear(5, 5)
self.fc2 = nn.Linear(5, 5)
self.fc3 = nn.Linear(5, 1)
if checkpoint:
self.fc1 = checkpoint_wrapper(self.fc1)
self.layers = [
self.fc1,
self.fc2,
self.fc1,
self.fc2,
self.fc3
]
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool:
if loose:
return torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3)
return torch.allclose(tensor_a, tensor_b)
def check_grads(model, zero_model, loose=False):
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
zero_grad = zero_p.grad.clone().to(p.device)
assert p.grad.dtype == zero_grad.dtype
assert allclose(p.grad, zero_grad, loose=loose)
LOGGER.info(torch.sum(p.grad-zero_grad))
def check_params(model, zero_model, loose=False):
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
zero_p = zero_p.clone().to(p.device)
assert p.dtype == zero_p.dtype
assert allclose(p, zero_p, loose=loose)