ColossalAI/tests/test_zero_data_parallel/test_shard_param.py
Jiarui Fang 5a560a060a Feature/zero (#279)
* add zero1 (#209)

* add zero1

* add test zero1

* update zero stage 1 develop (#212)

* Implement naive zero3 (#240)

* naive zero3 works well

* add zero3 param manager

* add TODOs in comments

* add gather full param ctx

* fix sub module streams

* add offload

* fix bugs of hook and add unit tests

* fix bugs of hook and add unit tests (#252)

* add gather full param ctx

* fix sub module streams

* add offload

* fix bugs of hook and add unit tests

* polish code and add state dict hook

* fix bug

* update unit test

* refactor reconstructed zero code

* clip_grad support zero3 and add unit test

* add unit test for Zero3ParameterManager

* [WIP] initialize the shard param class

* [WIP] Yet another sharded model implementation (#274)

* [WIP] initialize the shard param class

* [WIP] Yes another implementation of shardModel. Using a better hook method.

* torch.concat -> torch.cat

* fix test_zero_level_1.py::test_zero_level_1 unitest

* remove deepspeed implementation and refactor for the reconstructed zero module

* polish zero dp unittests

Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
2022-03-11 15:50:28 +08:00

50 lines
1.7 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from asyncio.log import logger
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.zero.shard_param import ShardParam
from colossalai.utils import free_port
from colossalai.logging import get_dist_logger, disable_existing_loggers
from tests.test_zero_data_parallel.common import Net, CONFIG
def run_shard_param_check(rank, world_size, port):
colossalai.launch(config=CONFIG,
rank=rank,
world_size=world_size,
host='localhost',
port=port,
backend='nccl')
logger = get_dist_logger()
model = Net()
# add an attribute as ca_attr to hijack the access to param.data
for _, param in model.named_parameters():
numel_ref = (param.numel() + world_size - 1) // world_size
param.ca_attr = ShardParam(param)
param.ca_attr.shard()
param_data = param.ca_attr.payload(torch.device('cpu'))
logger.info(f'shard {param_data.shape} {param_data}', ranks = [1])
assert(numel_ref == param_data.numel())
for _, param in model.named_parameters():
param.ca_attr.gather()
param_data = param.ca_attr.payload(torch.device('cpu'))
logger.info(f'gather {param_data.shape} {param_data}', ranks = [1])
disable_existing_loggers([logger])
@pytest.mark.dist
def test_run_shard_shape():
world_size = 2
run_func = partial(run_shard_param_check, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_run_shard_shape()