mirror of
				https://github.com/hpcaitech/ColossalAI.git
				synced 2025-10-31 05:49:56 +00:00 
			
		
		
		
	* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
		
			
				
	
	
		
			431 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			431 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding=utf-8
 | |
| # Copyright 2018 The Google AI Language Team Authors.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| """Tokenization classes."""
 | |
| 
 | |
| from __future__ import absolute_import, division, print_function
 | |
| 
 | |
| import collections
 | |
| import re
 | |
| import unicodedata
 | |
| 
 | |
| import six
 | |
| 
 | |
| 
 | |
| def validate_case_matches_checkpoint(do_lower_case, init_checkpoint):
 | |
|     """Checks whether the casing config is consistent with the checkpoint name."""
 | |
| 
 | |
|     # The casing has to be passed in by the user and there is no explicit check
 | |
|     # as to whether it matches the checkpoint. The casing information probably
 | |
|     # should have been stored in the bert_config.json file, but it's not, so
 | |
|     # we have to heuristically detect it to validate.
 | |
| 
 | |
|     if not init_checkpoint:
 | |
|         return
 | |
| 
 | |
|     m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", init_checkpoint)
 | |
|     if m is None:
 | |
|         return
 | |
| 
 | |
|     model_name = m.group(1)
 | |
| 
 | |
|     lower_models = [
 | |
|         "uncased_L-24_H-1024_A-16",
 | |
|         "uncased_L-12_H-768_A-12",
 | |
|         "multilingual_L-12_H-768_A-12",
 | |
|         "chinese_L-12_H-768_A-12",
 | |
|     ]
 | |
| 
 | |
|     cased_models = ["cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16", "multi_cased_L-12_H-768_A-12"]
 | |
| 
 | |
|     is_bad_config = False
 | |
|     if model_name in lower_models and not do_lower_case:
 | |
|         is_bad_config = True
 | |
|         actual_flag = "False"
 | |
|         case_name = "lowercased"
 | |
|         opposite_flag = "True"
 | |
| 
 | |
|     if model_name in cased_models and do_lower_case:
 | |
|         is_bad_config = True
 | |
|         actual_flag = "True"
 | |
|         case_name = "cased"
 | |
|         opposite_flag = "False"
 | |
| 
 | |
|     if is_bad_config:
 | |
|         raise ValueError(
 | |
|             "You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. "
 | |
|             "However, `%s` seems to be a %s model, so you "
 | |
|             "should pass in `--do_lower_case=%s` so that the fine-tuning matches "
 | |
|             "how the model was pre-training. If this error is wrong, please "
 | |
|             "just comment out this check." % (actual_flag, init_checkpoint, model_name, case_name, opposite_flag)
 | |
|         )
 | |
| 
 | |
| 
 | |
| def convert_to_unicode(text):
 | |
|     """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
 | |
|     if six.PY3:
 | |
|         if isinstance(text, str):
 | |
|             return text
 | |
|         elif isinstance(text, bytes):
 | |
|             return text.decode("utf-8", "ignore")
 | |
|         else:
 | |
|             raise ValueError("Unsupported string type: %s" % (type(text)))
 | |
|     elif six.PY2:
 | |
|         if isinstance(text, str):
 | |
|             return text.decode("utf-8", "ignore")
 | |
|         elif isinstance(text, unicode):
 | |
|             return text
 | |
|         else:
 | |
|             raise ValueError("Unsupported string type: %s" % (type(text)))
 | |
|     else:
 | |
|         raise ValueError("Not running on Python2 or Python 3?")
 | |
| 
 | |
| 
 | |
| def printable_text(text):
 | |
|     """Returns text encoded in a way suitable for print or `tf.logging`."""
 | |
| 
 | |
|     # These functions want `str` for both Python2 and Python3, but in one case
 | |
|     # it's a Unicode string and in the other it's a byte string.
 | |
|     if six.PY3:
 | |
|         if isinstance(text, str):
 | |
|             return text
 | |
|         elif isinstance(text, bytes):
 | |
|             return text.decode("utf-8", "ignore")
 | |
|         else:
 | |
|             raise ValueError("Unsupported string type: %s" % (type(text)))
 | |
|     elif six.PY2:
 | |
|         if isinstance(text, str):
 | |
|             return text
 | |
|         elif isinstance(text, unicode):
 | |
|             return text.encode("utf-8")
 | |
|         else:
 | |
|             raise ValueError("Unsupported string type: %s" % (type(text)))
 | |
|     else:
 | |
|         raise ValueError("Not running on Python2 or Python 3?")
 | |
| 
 | |
| 
 | |
| def load_vocab(vocab_file):
 | |
|     """Loads a vocabulary file into a dictionary."""
 | |
|     vocab = collections.OrderedDict()
 | |
|     index = 0
 | |
|     with open(vocab_file, "r") as reader:
 | |
|         while True:
 | |
|             token = convert_to_unicode(reader.readline())
 | |
|             if not token:
 | |
|                 break
 | |
|             token = token.strip()
 | |
|             vocab[token] = index
 | |
|             index += 1
 | |
|     return vocab
 | |
| 
 | |
| 
 | |
| def convert_by_vocab(vocab, items):
 | |
|     """Converts a sequence of [tokens|ids] using the vocab."""
 | |
|     output = []
 | |
|     for item in items:
 | |
|         output.append(vocab[item])
 | |
|     return output
 | |
| 
 | |
| 
 | |
| def convert_tokens_to_ids(vocab, tokens):
 | |
|     return convert_by_vocab(vocab, tokens)
 | |
| 
 | |
| 
 | |
| def convert_ids_to_tokens(inv_vocab, ids):
 | |
|     return convert_by_vocab(inv_vocab, ids)
 | |
| 
 | |
| 
 | |
| def whitespace_tokenize(text):
 | |
|     """Runs basic whitespace cleaning and splitting on a piece of text."""
 | |
|     text = text.strip()
 | |
|     if not text:
 | |
|         return []
 | |
|     tokens = text.split()
 | |
|     return tokens
 | |
| 
 | |
| 
 | |
| class FullTokenizer(object):
 | |
|     """Runs end-to-end tokenization."""
 | |
| 
 | |
|     def __init__(self, vocab_file, do_lower_case=True):
 | |
|         self.vocab = load_vocab(vocab_file)
 | |
|         self.inv_vocab = {v: k for k, v in self.vocab.items()}
 | |
|         self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
 | |
|         self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
 | |
| 
 | |
|     def tokenize(self, text):
 | |
|         split_tokens = []
 | |
|         for token in self.basic_tokenizer.tokenize(text):
 | |
|             for sub_token in self.wordpiece_tokenizer.tokenize(token):
 | |
|                 split_tokens.append(sub_token)
 | |
| 
 | |
|         return split_tokens
 | |
| 
 | |
|     def convert_tokens_to_ids(self, tokens):
 | |
|         return convert_by_vocab(self.vocab, tokens)
 | |
| 
 | |
|     def convert_ids_to_tokens(self, ids):
 | |
|         return convert_by_vocab(self.inv_vocab, ids)
 | |
| 
 | |
|     @staticmethod
 | |
|     def convert_tokens_to_string(tokens, clean_up_tokenization_spaces=True):
 | |
|         """Converts a sequence of tokens (string) in a single string."""
 | |
| 
 | |
|         def clean_up_tokenization(out_string):
 | |
|             """Clean up a list of simple English tokenization artifacts
 | |
|             like spaces before punctuations and abbreviated forms.
 | |
|             """
 | |
|             out_string = (
 | |
|                 out_string.replace(" .", ".")
 | |
|                 .replace(" ?", "?")
 | |
|                 .replace(" !", "!")
 | |
|                 .replace(" ,", ",")
 | |
|                 .replace(" ' ", "'")
 | |
|                 .replace(" n't", "n't")
 | |
|                 .replace(" 'm", "'m")
 | |
|                 .replace(" 's", "'s")
 | |
|                 .replace(" 've", "'ve")
 | |
|                 .replace(" 're", "'re")
 | |
|             )
 | |
|             return out_string
 | |
| 
 | |
|         text = " ".join(tokens).replace(" ##", "").strip()
 | |
|         if clean_up_tokenization_spaces:
 | |
|             clean_text = clean_up_tokenization(text)
 | |
|             return clean_text
 | |
|         else:
 | |
|             return text
 | |
| 
 | |
|     def vocab_size(self):
 | |
|         return len(self.vocab)
 | |
| 
 | |
| 
 | |
| class BasicTokenizer(object):
 | |
|     """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
 | |
| 
 | |
|     def __init__(self, do_lower_case=True):
 | |
|         """Constructs a BasicTokenizer.
 | |
| 
 | |
|         Args:
 | |
|           do_lower_case: Whether to lower case the input.
 | |
|         """
 | |
|         self.do_lower_case = do_lower_case
 | |
| 
 | |
|     def tokenize(self, text):
 | |
|         """Tokenizes a piece of text."""
 | |
|         text = convert_to_unicode(text)
 | |
|         text = self._clean_text(text)
 | |
| 
 | |
|         # This was added on November 1st, 2018 for the multilingual and Chinese
 | |
|         # models. This is also applied to the English models now, but it doesn't
 | |
|         # matter since the English models were not trained on any Chinese data
 | |
|         # and generally don't have any Chinese data in them (there are Chinese
 | |
|         # characters in the vocabulary because Wikipedia does have some Chinese
 | |
|         # words in the English Wikipedia.).
 | |
|         text = self._tokenize_chinese_chars(text)
 | |
| 
 | |
|         orig_tokens = whitespace_tokenize(text)
 | |
|         split_tokens = []
 | |
|         for token in orig_tokens:
 | |
|             if self.do_lower_case:
 | |
|                 token = token.lower()
 | |
|                 token = self._run_strip_accents(token)
 | |
|             split_tokens.extend(self._run_split_on_punc(token))
 | |
| 
 | |
|         output_tokens = whitespace_tokenize(" ".join(split_tokens))
 | |
|         return output_tokens
 | |
| 
 | |
|     def _run_strip_accents(self, text):
 | |
|         """Strips accents from a piece of text."""
 | |
|         text = unicodedata.normalize("NFD", text)
 | |
|         output = []
 | |
|         for char in text:
 | |
|             cat = unicodedata.category(char)
 | |
|             if cat == "Mn":
 | |
|                 continue
 | |
|             output.append(char)
 | |
|         return "".join(output)
 | |
| 
 | |
|     def _run_split_on_punc(self, text):
 | |
|         """Splits punctuation on a piece of text."""
 | |
|         chars = list(text)
 | |
|         i = 0
 | |
|         start_new_word = True
 | |
|         output = []
 | |
|         while i < len(chars):
 | |
|             char = chars[i]
 | |
|             if _is_punctuation(char):
 | |
|                 output.append([char])
 | |
|                 start_new_word = True
 | |
|             else:
 | |
|                 if start_new_word:
 | |
|                     output.append([])
 | |
|                 start_new_word = False
 | |
|                 output[-1].append(char)
 | |
|             i += 1
 | |
| 
 | |
|         return ["".join(x) for x in output]
 | |
| 
 | |
|     def _tokenize_chinese_chars(self, text):
 | |
|         """Adds whitespace around any CJK character."""
 | |
|         output = []
 | |
|         for char in text:
 | |
|             cp = ord(char)
 | |
|             if self._is_chinese_char(cp):
 | |
|                 output.append(" ")
 | |
|                 output.append(char)
 | |
|                 output.append(" ")
 | |
|             else:
 | |
|                 output.append(char)
 | |
|         return "".join(output)
 | |
| 
 | |
|     def _is_chinese_char(self, cp):
 | |
|         """Checks whether CP is the codepoint of a CJK character."""
 | |
|         # This defines a "chinese character" as anything in the CJK Unicode block:
 | |
|         #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
 | |
|         #
 | |
|         # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
 | |
|         # despite its name. The modern Korean Hangul alphabet is a different block,
 | |
|         # as is Japanese Hiragana and Katakana. Those alphabets are used to write
 | |
|         # space-separated words, so they are not treated specially and handled
 | |
|         # like the all of the other languages.
 | |
|         if (
 | |
|             (cp >= 0x4E00 and cp <= 0x9FFF)
 | |
|             or (cp >= 0x3400 and cp <= 0x4DBF)  #
 | |
|             or (cp >= 0x20000 and cp <= 0x2A6DF)  #
 | |
|             or (cp >= 0x2A700 and cp <= 0x2B73F)  #
 | |
|             or (cp >= 0x2B740 and cp <= 0x2B81F)  #
 | |
|             or (cp >= 0x2B820 and cp <= 0x2CEAF)  #
 | |
|             or (cp >= 0xF900 and cp <= 0xFAFF)
 | |
|             or (cp >= 0x2F800 and cp <= 0x2FA1F)  #
 | |
|         ):  #
 | |
|             return True
 | |
| 
 | |
|         return False
 | |
| 
 | |
|     def _clean_text(self, text):
 | |
|         """Performs invalid character removal and whitespace cleanup on text."""
 | |
|         output = []
 | |
|         for char in text:
 | |
|             cp = ord(char)
 | |
|             if cp == 0 or cp == 0xFFFD or _is_control(char):
 | |
|                 continue
 | |
|             if _is_whitespace(char):
 | |
|                 output.append(" ")
 | |
|             else:
 | |
|                 output.append(char)
 | |
|         return "".join(output)
 | |
| 
 | |
| 
 | |
| class WordpieceTokenizer(object):
 | |
|     """Runs WordPiece tokenization."""
 | |
| 
 | |
|     def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200):
 | |
|         self.vocab = vocab
 | |
|         self.unk_token = unk_token
 | |
|         self.max_input_chars_per_word = max_input_chars_per_word
 | |
| 
 | |
|     def tokenize(self, text):
 | |
|         """Tokenizes a piece of text into its word pieces.
 | |
| 
 | |
|         This uses a greedy longest-match-first algorithm to perform tokenization
 | |
|         using the given vocabulary.
 | |
| 
 | |
|         For example:
 | |
|           input = "unaffable"
 | |
|           output = ["un", "##aff", "##able"]
 | |
| 
 | |
|         Args:
 | |
|           text: A single token or whitespace separated tokens. This should have
 | |
|             already been passed through `BasicTokenizer.
 | |
| 
 | |
|         Returns:
 | |
|           A list of wordpiece tokens.
 | |
|         """
 | |
| 
 | |
|         text = convert_to_unicode(text)
 | |
| 
 | |
|         output_tokens = []
 | |
|         for token in whitespace_tokenize(text):
 | |
|             chars = list(token)
 | |
|             if len(chars) > self.max_input_chars_per_word:
 | |
|                 output_tokens.append(self.unk_token)
 | |
|                 continue
 | |
| 
 | |
|             is_bad = False
 | |
|             start = 0
 | |
|             sub_tokens = []
 | |
|             while start < len(chars):
 | |
|                 end = len(chars)
 | |
|                 cur_substr = None
 | |
|                 while start < end:
 | |
|                     substr = "".join(chars[start:end])
 | |
|                     if start > 0:
 | |
|                         substr = "##" + substr
 | |
|                     if substr in self.vocab:
 | |
|                         cur_substr = substr
 | |
|                         break
 | |
|                     end -= 1
 | |
|                 if cur_substr is None:
 | |
|                     is_bad = True
 | |
|                     break
 | |
|                 sub_tokens.append(cur_substr)
 | |
|                 start = end
 | |
| 
 | |
|             if is_bad:
 | |
|                 output_tokens.append(self.unk_token)
 | |
|             else:
 | |
|                 output_tokens.extend(sub_tokens)
 | |
|         return output_tokens
 | |
| 
 | |
| 
 | |
| def _is_whitespace(char):
 | |
|     """Checks whether `chars` is a whitespace character."""
 | |
|     # \t, \n, and \r are technically control characters but we treat them
 | |
|     # as whitespace since they are generally considered as such.
 | |
|     if char == " " or char == "\t" or char == "\n" or char == "\r":
 | |
|         return True
 | |
|     cat = unicodedata.category(char)
 | |
|     if cat == "Zs":
 | |
|         return True
 | |
|     return False
 | |
| 
 | |
| 
 | |
| def _is_control(char):
 | |
|     """Checks whether `chars` is a control character."""
 | |
|     # These are technically control characters but we count them as whitespace
 | |
|     # characters.
 | |
|     if char == "\t" or char == "\n" or char == "\r":
 | |
|         return False
 | |
|     cat = unicodedata.category(char)
 | |
|     if cat in ("Cc", "Cf"):
 | |
|         return True
 | |
|     return False
 | |
| 
 | |
| 
 | |
| def _is_punctuation(char):
 | |
|     """Checks whether `chars` is a punctuation character."""
 | |
|     cp = ord(char)
 | |
|     # We treat all non-letter/number ASCII as punctuation.
 | |
|     # Characters such as "^", "$", and "`" are not in the Unicode
 | |
|     # Punctuation class but we treat them as punctuation anyways, for
 | |
|     # consistency.
 | |
|     if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
 | |
|         return True
 | |
|     cat = unicodedata.category(char)
 | |
|     if cat.startswith("P"):
 | |
|         return True
 | |
|     return False
 |