mirror of
				https://github.com/hpcaitech/ColossalAI.git
				synced 2025-10-30 21:39:05 +00:00 
			
		
		
		
	* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
		
			
				
	
	
		
			58 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			58 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| import torch.nn as nn
 | |
| 
 | |
| from colossalai.legacy.context.parallel_mode import ParallelMode
 | |
| from colossalai.legacy.core import global_context as gpc
 | |
| 
 | |
| 
 | |
| class PreProcessor(nn.Module):
 | |
|     def __init__(self, sub_seq_length):
 | |
|         super().__init__()
 | |
|         self.sub_seq_length = sub_seq_length
 | |
| 
 | |
|     def bert_position_ids(self, token_ids):
 | |
|         # Create position ids
 | |
|         seq_length = token_ids.size(1)
 | |
|         local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE)
 | |
|         position_ids = torch.arange(
 | |
|             seq_length * local_rank, seq_length * (local_rank + 1), dtype=torch.long, device=token_ids.device
 | |
|         )
 | |
|         position_ids = position_ids.unsqueeze(0).expand_as(token_ids)
 | |
| 
 | |
|         return position_ids
 | |
| 
 | |
|     def bert_extended_attention_mask(self, attention_mask):
 | |
|         local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE)
 | |
|         start_index = local_rank * self.sub_seq_length
 | |
|         end_index = (local_rank + 1) * self.sub_seq_length
 | |
| 
 | |
|         # We create a 3D attention mask from a 2D tensor mask.
 | |
|         # [b, 1, s]
 | |
|         attention_mask_b1s = attention_mask.unsqueeze(1)
 | |
|         # [b, s, 1]
 | |
|         attention_mask_bs1 = attention_mask.unsqueeze(2)
 | |
|         # [b, s/D, s]
 | |
|         attention_mask_bss = attention_mask_b1s * attention_mask_bs1
 | |
| 
 | |
|         attention_mask_bss = attention_mask_bss[:, start_index:end_index, :]
 | |
| 
 | |
|         # [b, 1, s/D, s]
 | |
|         extended_attention_mask = attention_mask_bss.unsqueeze(1)
 | |
| 
 | |
|         # Convert attention mask to binary:
 | |
|         extended_attention_mask = extended_attention_mask < 0.5
 | |
| 
 | |
|         return extended_attention_mask
 | |
| 
 | |
|     def forward(self, input_ids=None, attention_mask=None):
 | |
|         if attention_mask is not None:
 | |
|             extended_attention_mask = self.bert_extended_attention_mask(attention_mask)
 | |
|         else:
 | |
|             extended_attention_mask = None
 | |
| 
 | |
|         if input_ids is not None:
 | |
|             position_ids = self.bert_position_ids(input_ids)
 | |
|         else:
 | |
|             position_ids = None
 | |
|         return position_ids, extended_attention_mask
 |