mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-04-27 19:36:13 +00:00
* [inference] add int8 rotary embedding kernel for smoothquant (#4843) * [inference] add smoothquant llama attention (#4850) * add smoothquant llama attention * remove uselss code * remove useless code * fix import error * rename file name * [inference] add silu linear fusion for smoothquant llama mlp (#4853) * add silu linear * update skip condition * catch smoothquant cuda lib exception * prcocess exception for tests * [inference] add llama mlp for smoothquant (#4854) * add llama mlp for smoothquant * fix down out scale * remove duplicate lines * add llama mlp check * delete useless code * [inference] add smoothquant llama (#4861) * add smoothquant llama * fix attention accuracy * fix accuracy * add kv cache and save pretrained * refactor example * delete smooth * refactor code * [inference] add smooth function and delete useless code for smoothquant (#4895) * add smooth function and delete useless code * update datasets * remove duplicate import * delete useless file * refactor codes (#4902) * rafactor code * add license * add torch-int and smoothquant license
70 lines
2.1 KiB
Python
70 lines
2.1 KiB
Python
import argparse
|
|
import os
|
|
|
|
import torch
|
|
from datasets import load_dataset
|
|
from transformers import LlamaTokenizer
|
|
|
|
from colossalai.inference.quant.smoothquant.models.llama import SmoothLlamaForCausalLM
|
|
|
|
|
|
def build_model_and_tokenizer(model_name):
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_name, model_max_length=512)
|
|
kwargs = {"torch_dtype": torch.float16, "device_map": "sequential"}
|
|
model = SmoothLlamaForCausalLM.from_pretrained(model_name, **kwargs)
|
|
model = model.to(torch.float32)
|
|
return model, tokenizer
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model-name", type=str, help="model name")
|
|
parser.add_argument(
|
|
"--output-path",
|
|
type=str,
|
|
help="where to save the checkpoint",
|
|
)
|
|
parser.add_argument(
|
|
"--dataset-path",
|
|
type=str,
|
|
help="location of the calibration dataset",
|
|
)
|
|
parser.add_argument("--num-samples", type=int, default=512)
|
|
parser.add_argument("--seq-len", type=int, default=512)
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
args = parse_args()
|
|
model_path = args.model_name
|
|
dataset_path = args.dataset_path
|
|
output_path = args.output_path
|
|
num_samples = 10
|
|
seq_len = 512
|
|
|
|
model, tokenizer = build_model_and_tokenizer(model_path)
|
|
if not os.path.exists(dataset_path):
|
|
print(f"Cannot find the dataset at {args.dataset_path}")
|
|
raise FileNotFoundError
|
|
dataset = load_dataset("json", data_files=dataset_path, split="train")
|
|
|
|
model.quantized(tokenizer, dataset, num_samples=num_samples, seq_len=seq_len)
|
|
model = model.cuda()
|
|
|
|
model.save_quantized(output_path, model_basename="llama-7b")
|
|
|
|
model = SmoothLlamaForCausalLM.from_quantized(output_path, model_basename="llama-7b")
|
|
model = model.cuda()
|
|
|
|
generate_kwargs = dict(max_new_tokens=16, do_sample=False, use_cache=True)
|
|
input_tokens = tokenizer(["today is "], return_tensors="pt").to("cuda")
|
|
out = model.generate(**input_tokens, **generate_kwargs)
|
|
text = tokenizer.batch_decode(out)
|
|
print("out is:", text)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|