Files
ColossalAI/applications/Chat/examples/community/easy_models.py
YY Lin 62f4e2eb07 [Chat]Add Peft support & fix the ptx bug (#3433)
* Update ppo.py

Fix the bug of fetching wrong batch data

* Add peft model support in SFT and Prompts training

In stage-1 and stage-3, the peft model supports are added. So the trained artifacts will be only a small lora additions instead of the whole bunch of files.

* Delete test_prompts.txt

* Delete test_pretrained.txt

* Move the peft stuffs to a community folder.

* Move the demo sft to community

* delete dirty files

* Add instructions to install peft using source

* Remove Chinese comments

* remove the Chinese comments
2023-04-06 11:54:52 +08:00

98 lines
3.4 KiB
Python

from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules import Module
from coati.models.generation import generate
from coati.models.utils import log_probs_from_logits,masked_mean
from transformers import BloomConfig,BloomForCausalLM
from peft import PeftModel
class Actor(Module):
"""
Actor model base class.
Args:
model (nn.Module): Actor Model.
"""
def __init__(self, model: nn.Module) -> None:
super().__init__()
self.model = model
@torch.no_grad()
def generate(
self,
input_ids: torch.Tensor,
return_action_mask: bool = True,
**kwargs
) -> Union[Tuple[torch.LongTensor, torch.LongTensor], Tuple[torch.LongTensor, torch.LongTensor, torch.BoolTensor]]:
sequences = generate(self.model, input_ids, **kwargs)
attention_mask = None
pad_token_id = kwargs.get('pad_token_id', None)
if pad_token_id is not None:
attention_mask = sequences.not_equal(pad_token_id).to(dtype=torch.long, device=sequences.device)
if not return_action_mask:
return sequences, attention_mask, None
input_len = input_ids.size(1)
eos_token_id = kwargs.get('eos_token_id', None)
if eos_token_id is None:
action_mask = torch.ones_like(sequences, dtype=torch.bool)
else:
# left padding may be applied, only mask action
action_mask = (sequences[:, input_len:] == eos_token_id).cumsum(dim=-1) == 0
action_mask = F.pad(action_mask, (1 + input_len, -1), value=True) # include eos token and input
action_mask[:, :input_len] = False
action_mask = action_mask[:, 1:]
return sequences, attention_mask, action_mask[:, -(sequences.size(1) - input_len):]
def forward(self,
sequences: torch.LongTensor,
num_actions: int,
attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Returns action log probs
"""
output = self.model(sequences, attention_mask=attention_mask)
logits = output['logits']
log_probs = log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:])
return log_probs[:, -num_actions:]
def get_base_model(self):
return self.model
class BLOOMActor(Actor):
"""
BLOOM Actor model.
Args:
pretrained (str): Pretrained model name or path.
config (BloomConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: str = None,
config: Optional[BloomConfig] = None,
checkpoint: bool = False,
lora_path: str = None) -> None:
if pretrained is not None:
model = BloomForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = BloomForCausalLM(config)
else:
model = BloomForCausalLM(BloomConfig())
if lora_path is not None:
model = PeftModel.from_pretrained(model,lora_path)
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model)
def print_trainable_parameters(self):
self.get_base_model().print_trainable_parameters()