ColossalAI/applications/Chat/coati/experience_buffer/naive.py
Wenhao Chen 7b9b86441f
[chat]: update rm, add wandb and fix bugs (#4471)
* feat: modify forward fn of critic and reward model

* feat: modify calc_action_log_probs

* to: add wandb in sft and rm trainer

* feat: update train_sft

* feat: update train_rm

* style: modify type annotation and add warning

* feat: pass tokenizer to ppo trainer

* to: modify trainer base and maker base

* feat: add wandb in ppo trainer

* feat: pass tokenizer to generate

* test: update generate fn tests

* test: update train tests

* fix: remove action_mask

* feat: remove unused code

* fix: fix wrong ignore_index

* fix: fix mock tokenizer

* chore: update requirements

* revert: modify make_experience

* fix: fix inference

* fix: add padding side

* style: modify _on_learn_batch_end

* test: use mock tokenizer

* fix: use bf16 to avoid overflow

* fix: fix workflow

* [chat] fix gemini strategy

* [chat] fix

* sync: update colossalai strategy

* fix: fix args and model dtype

* fix: fix checkpoint test

* fix: fix requirements

* fix: fix missing import and wrong arg

* fix: temporarily skip gemini test in stage 3

* style: apply pre-commit

* fix: temporarily skip gemini test in stage 1&2

---------

Co-authored-by: Mingyan Jiang <1829166702@qq.com>
2023-09-20 15:53:58 +08:00

61 lines
2.1 KiB
Python

import random
import warnings
from typing import List
import torch
from coati.experience_maker.base import Experience
from .base import ExperienceBuffer
from .utils import BufferItem, make_experience_batch, split_experience_batch
class NaiveExperienceBuffer(ExperienceBuffer):
"""Naive experience buffer class. It stores experience.
Args:
sample_batch_size (int): Batch size when sampling.
limit (int, optional): Limit of number of experience samples. A number <= 0 means unlimited. Defaults to 0.
cpu_offload (bool, optional): Whether to offload experience to cpu when sampling. Defaults to True.
"""
def __init__(self, sample_batch_size: int, limit: int = 0, cpu_offload: bool = True) -> None:
super().__init__(sample_batch_size, limit)
self.cpu_offload = cpu_offload
self.target_device = torch.device(f"cuda:{torch.cuda.current_device()}")
# TODO(ver217): add prefetch
self.items: List[BufferItem] = []
@torch.no_grad()
def append(self, experience: Experience) -> None:
if self.cpu_offload:
experience.to_device(torch.device("cpu"))
items = split_experience_batch(experience)
self.items.extend(items)
if self.limit > 0:
samples_to_remove = len(self.items) - self.limit
if samples_to_remove > 0:
warnings.warn(f"Experience buffer is full. Removing {samples_to_remove} samples.")
self.items = self.items[samples_to_remove:]
def clear(self) -> None:
self.items.clear()
@torch.no_grad()
def sample(self) -> Experience:
items = random.sample(self.items, self.sample_batch_size)
experience = make_experience_batch(items)
if self.cpu_offload:
experience.to_device(self.target_device)
return experience
def __len__(self) -> int:
return len(self.items)
def __getitem__(self, idx: int) -> BufferItem:
return self.items[idx]
def collate_fn(self, batch) -> Experience:
experience = make_experience_batch(batch)
return experience