mirror of
				https://github.com/hpcaitech/ColossalAI.git
				synced 2025-10-31 13:59:23 +00:00 
			
		
		
		
	* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
		
			
				
	
	
		
			242 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding=utf-8
 | |
| # Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """Megatron tokenizers."""
 | |
| 
 | |
| from abc import ABC, abstractmethod
 | |
| 
 | |
| from colossalai.legacy.context import ParallelMode
 | |
| from colossalai.legacy.core import global_context as gpc
 | |
| 
 | |
| from .bert_tokenization import FullTokenizer as FullBertTokenizer
 | |
| 
 | |
| 
 | |
| def build_tokenizer(vocab_file, tokenizer_type, vocab_extra_ids=0):
 | |
|     """Initialize tokenizer."""
 | |
|     if not gpc.is_initialized(ParallelMode.GLOBAL) or gpc.get_global_rank() == 0:
 | |
|         print("> building {} tokenizer ...".format(tokenizer_type), flush=True)
 | |
| 
 | |
|     # Select and instantiate the tokenizer.
 | |
|     if tokenizer_type == "BertWordPieceLowerCase":
 | |
|         tokenizer = _BertWordPieceTokenizer(vocab_file=vocab_file, lower_case=True, vocab_extra_ids=vocab_extra_ids)
 | |
|     elif tokenizer_type == "BertWordPieceCase":
 | |
|         tokenizer = _BertWordPieceTokenizer(vocab_file=vocab_file, lower_case=False, vocab_extra_ids=vocab_extra_ids)
 | |
|     else:
 | |
|         raise NotImplementedError("{} tokenizer is not " "implemented.".format(tokenizer_type))
 | |
| 
 | |
|     # Add vocab size.
 | |
|     padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size)
 | |
| 
 | |
|     return tokenizer, padded_vocab_size
 | |
| 
 | |
| 
 | |
| def _vocab_size_with_padding(orig_vocab_size, make_vocab_size_divisible_by=128):
 | |
|     """Pad vocab size so it is divisible by model parallel size and
 | |
|     still having GPU friendly size."""
 | |
| 
 | |
|     after = orig_vocab_size
 | |
| 
 | |
|     if gpc.is_initialized(ParallelMode.TENSOR):
 | |
|         multiple = make_vocab_size_divisible_by * gpc.get_world_size(ParallelMode.TENSOR)
 | |
|     else:
 | |
|         multiple = make_vocab_size_divisible_by
 | |
|     while (after % multiple) != 0:
 | |
|         after += 1
 | |
|     if not gpc.is_initialized(ParallelMode.GLOBAL) or gpc.get_global_rank() == 0:
 | |
|         print(
 | |
|             " > padded vocab (size: {}) with {} dummy tokens "
 | |
|             "(new size: {})".format(orig_vocab_size, after - orig_vocab_size, after),
 | |
|             flush=True,
 | |
|         )
 | |
|     return after
 | |
| 
 | |
| 
 | |
| class AbstractTokenizer(ABC):
 | |
|     """Abstract class for tokenizer."""
 | |
| 
 | |
|     def __init__(self, name):
 | |
|         self.name = name
 | |
|         super().__init__()
 | |
| 
 | |
|     @property
 | |
|     @abstractmethod
 | |
|     def vocab_size(self):
 | |
|         pass
 | |
| 
 | |
|     @property
 | |
|     @abstractmethod
 | |
|     def vocab(self):
 | |
|         """Dictionary from vocab text token to id token."""
 | |
| 
 | |
|     @property
 | |
|     @abstractmethod
 | |
|     def inv_vocab(self):
 | |
|         """Dictionary from vocab id token to text token."""
 | |
| 
 | |
|     @abstractmethod
 | |
|     def tokenize(self, text):
 | |
|         pass
 | |
| 
 | |
|     def detokenize(self, token_ids):
 | |
|         raise NotImplementedError("detokenizer is not implemented for {} " "tokenizer".format(self.name))
 | |
| 
 | |
|     @property
 | |
|     def cls(self):
 | |
|         raise NotImplementedError("CLS is not provided for {} " "tokenizer".format(self.name))
 | |
| 
 | |
|     @property
 | |
|     def sep(self):
 | |
|         raise NotImplementedError("SEP is not provided for {} " "tokenizer".format(self.name))
 | |
| 
 | |
|     @property
 | |
|     def pad(self):
 | |
|         raise NotImplementedError("PAD is not provided for {} " "tokenizer".format(self.name))
 | |
| 
 | |
|     @property
 | |
|     def eod(self):
 | |
|         raise NotImplementedError("EOD is not provided for {} " "tokenizer".format(self.name))
 | |
| 
 | |
|     @property
 | |
|     def mask(self):
 | |
|         raise NotImplementedError("MASK is not provided for {} " "tokenizer".format(self.name))
 | |
| 
 | |
| 
 | |
| class _BertWordPieceTokenizer(AbstractTokenizer):
 | |
|     """Original BERT wordpiece tokenizer."""
 | |
| 
 | |
|     def __init__(self, vocab_file, lower_case=True, vocab_extra_ids=0):
 | |
|         if lower_case:
 | |
|             name = "BERT Lower Case"
 | |
|         else:
 | |
|             name = "BERT Upper Case"
 | |
|         super().__init__(name)
 | |
|         self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=lower_case)
 | |
|         self.cls_id = self.tokenizer.vocab["[CLS]"]
 | |
|         self.sep_id = self.tokenizer.vocab["[SEP]"]
 | |
|         self.pad_id = self.tokenizer.vocab["[PAD]"]
 | |
|         self.mask_id = self.tokenizer.vocab["[MASK]"]
 | |
|         self._additional_special_tokens = []
 | |
| 
 | |
|         # (dsachan) Add BOS and EOS tokens
 | |
|         SPECIAL_TOKENS = {"eos_token": "[EOS]", "bos_token": "[BOS]"}
 | |
|         self._bos_token = "[BOS]"
 | |
|         self.add_token(self._bos_token)
 | |
|         self._bos_token_id = self.vocab.get(self._bos_token)
 | |
| 
 | |
|         self._eos_token = "[EOS]"
 | |
|         self.add_token(self._eos_token)
 | |
|         self._eos_token_id = self.vocab.get(self._eos_token)
 | |
| 
 | |
|         # (dsachan) Add additional special tokens
 | |
|         # These can be used as sentinel tokens in T5 model inputs
 | |
|         additional_special_tokens = []
 | |
|         additional_special_tokens.extend(["<extra_id_{}>".format(i) for i in range(vocab_extra_ids)])
 | |
|         self.add_additional_special_tokens(additional_special_tokens)
 | |
| 
 | |
|     def add_token(self, token):
 | |
|         if token not in self.vocab:
 | |
|             self.inv_vocab[self.vocab_size] = token
 | |
|             # self.vocab_size comes from len(vocab)
 | |
|             # and it will increase as we add elements
 | |
|             self.vocab[token] = self.vocab_size
 | |
| 
 | |
|     def add_additional_special_tokens(self, tokens_list):
 | |
|         setattr(self, "additional_special_tokens", tokens_list)
 | |
|         for value in tokens_list:
 | |
|             self.add_token(value)
 | |
| 
 | |
|     @property
 | |
|     def vocab_size(self):
 | |
|         return self.tokenizer.vocab_size()
 | |
| 
 | |
|     @property
 | |
|     def vocab(self):
 | |
|         return self.tokenizer.vocab
 | |
| 
 | |
|     @property
 | |
|     def inv_vocab(self):
 | |
|         return self.tokenizer.inv_vocab
 | |
| 
 | |
|     def tokenize(self, text):
 | |
|         text_tokens = self.tokenizer.tokenize(text)
 | |
|         return self.tokenizer.convert_tokens_to_ids(text_tokens)
 | |
| 
 | |
|     def decode(self, ids):
 | |
|         tokens = self.tokenizer.convert_ids_to_tokens(ids)
 | |
|         return self.tokenizer.convert_tokens_to_string(tokens)
 | |
| 
 | |
|     def decode_token_ids(self, token_ids):
 | |
|         tokens = self.tokenizer.convert_ids_to_tokens(token_ids)
 | |
|         exclude_list = ["[PAD]", "[CLS]"]
 | |
|         non_pads = [t for t in tokens if t not in exclude_list]
 | |
| 
 | |
|         result = ""
 | |
|         for s in non_pads:
 | |
|             if s.startswith("##"):
 | |
|                 result += s[2:]
 | |
|             else:
 | |
|                 result += " " + s
 | |
| 
 | |
|         return result
 | |
| 
 | |
|     @property
 | |
|     def cls(self):
 | |
|         return self.cls_id
 | |
| 
 | |
|     @property
 | |
|     def sep(self):
 | |
|         return self.sep_id
 | |
| 
 | |
|     @property
 | |
|     def pad(self):
 | |
|         return self.pad_id
 | |
| 
 | |
|     @property
 | |
|     def mask(self):
 | |
|         return self.mask_id
 | |
| 
 | |
|     @property
 | |
|     def bos_token(self):
 | |
|         """Beginning of sentence token id"""
 | |
|         return self._bos_token
 | |
| 
 | |
|     @property
 | |
|     def eos_token(self):
 | |
|         """End of sentence token id"""
 | |
|         return self._eos_token
 | |
| 
 | |
|     @property
 | |
|     def additional_special_tokens(self):
 | |
|         """All the additional special tokens you may want to use (list of strings)."""
 | |
|         return self._additional_special_tokens
 | |
| 
 | |
|     @property
 | |
|     def bos_token_id(self):
 | |
|         """Id of the beginning of sentence token in the vocabulary."""
 | |
|         return self._bos_token_id
 | |
| 
 | |
|     @property
 | |
|     def eos_token_id(self):
 | |
|         """Id of the end of sentence token in the vocabulary."""
 | |
|         return self._eos_token_id
 | |
| 
 | |
|     @property
 | |
|     def additional_special_tokens_ids(self):
 | |
|         """Ids of all the additional special tokens in the vocabulary (list of integers)."""
 | |
|         return [self.vocab.get(token) for token in self._additional_special_tokens]
 | |
| 
 | |
|     @additional_special_tokens.setter
 | |
|     def additional_special_tokens(self, value):
 | |
|         self._additional_special_tokens = value
 |