ColossalAI/tests/kit/model_zoo/torchvision/torchvision.py
pre-commit-ci[bot] 7c2f79fa98
[pre-commit.ci] pre-commit autoupdate (#5572)
* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/PyCQA/autoflake: v2.2.1 → v2.3.1](https://github.com/PyCQA/autoflake/compare/v2.2.1...v2.3.1)
- [github.com/pycqa/isort: 5.12.0 → 5.13.2](https://github.com/pycqa/isort/compare/5.12.0...5.13.2)
- [github.com/psf/black-pre-commit-mirror: 23.9.1 → 24.4.2](https://github.com/psf/black-pre-commit-mirror/compare/23.9.1...24.4.2)
- [github.com/pre-commit/mirrors-clang-format: v13.0.1 → v18.1.7](https://github.com/pre-commit/mirrors-clang-format/compare/v13.0.1...v18.1.7)
- [github.com/pre-commit/pre-commit-hooks: v4.3.0 → v4.6.0](https://github.com/pre-commit/pre-commit-hooks/compare/v4.3.0...v4.6.0)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-07-01 17:16:41 +08:00

160 lines
4.9 KiB
Python

import torch
import torchvision
import torchvision.models as tm
from packaging import version
from ..registry import ModelAttribute, model_zoo
data_gen_fn = lambda: dict(x=torch.rand(4, 3, 224, 224))
output_transform_fn = lambda x: dict(output=x)
# special data gen fn
inception_v3_data_gen_fn = lambda: dict(x=torch.rand(4, 3, 299, 299))
# special model fn
def swin_s():
from torchvision.models.swin_transformer import Swin_T_Weights, _swin_transformer
# adapted from torchvision.models.swin_transformer.swin_small
weights = None
weights = Swin_T_Weights.verify(weights)
progress = True
return _swin_transformer(
patch_size=[4, 4],
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=[7, 7],
stochastic_depth_prob=0, # it is originally 0.2, but we set it to 0 to make it deterministic
weights=weights,
progress=progress,
)
# special output transform fn
google_net_output_transform_fn = lambda x: (
dict(output=sum(x)) if isinstance(x, torchvision.models.GoogLeNetOutputs) else dict(output=x)
)
swin_s_output_output_transform_fn = lambda x: (
{f"output{idx}": val for idx, val in enumerate(x)} if isinstance(x, tuple) else dict(output=x)
)
inception_v3_output_transform_fn = lambda x: (
dict(output=sum(x)) if isinstance(x, torchvision.models.InceptionOutputs) else dict(output=x)
)
model_zoo.register(
name="torchvision_alexnet", model_fn=tm.alexnet, data_gen_fn=data_gen_fn, output_transform_fn=output_transform_fn
)
model_zoo.register(
name="torchvision_densenet121",
model_fn=tm.densenet121,
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
)
model_zoo.register(
name="torchvision_efficientnet_b0",
model_fn=tm.efficientnet_b0,
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
model_attribute=ModelAttribute(has_stochastic_depth_prob=True),
)
model_zoo.register(
name="torchvision_googlenet",
model_fn=tm.googlenet,
data_gen_fn=data_gen_fn,
output_transform_fn=google_net_output_transform_fn,
)
model_zoo.register(
name="torchvision_inception_v3",
model_fn=tm.inception_v3,
data_gen_fn=inception_v3_data_gen_fn,
output_transform_fn=inception_v3_output_transform_fn,
)
model_zoo.register(
name="torchvision_mobilenet_v2",
model_fn=tm.mobilenet_v2,
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
)
model_zoo.register(
name="torchvision_mobilenet_v3_small",
model_fn=tm.mobilenet_v3_small,
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
)
model_zoo.register(
name="torchvision_mnasnet0_5",
model_fn=tm.mnasnet0_5,
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
)
model_zoo.register(
name="torchvision_resnet18", model_fn=tm.resnet18, data_gen_fn=data_gen_fn, output_transform_fn=output_transform_fn
)
model_zoo.register(
name="torchvision_regnet_x_16gf",
model_fn=tm.regnet_x_16gf,
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
)
model_zoo.register(
name="torchvision_resnext50_32x4d",
model_fn=tm.resnext50_32x4d,
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
)
model_zoo.register(
name="torchvision_shufflenet_v2_x0_5",
model_fn=tm.shufflenet_v2_x0_5,
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
)
model_zoo.register(
name="torchvision_squeezenet1_0",
model_fn=tm.squeezenet1_0,
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
)
model_zoo.register(
name="torchvision_vgg11", model_fn=tm.vgg11, data_gen_fn=data_gen_fn, output_transform_fn=output_transform_fn
)
model_zoo.register(
name="torchvision_wide_resnet50_2",
model_fn=tm.wide_resnet50_2,
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
)
if version.parse(torchvision.__version__) >= version.parse("0.12.0"):
model_zoo.register(
name="torchvision_vit_b_16",
model_fn=tm.vit_b_16,
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
)
model_zoo.register(
name="torchvision_convnext_base",
model_fn=tm.convnext_base,
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
model_attribute=ModelAttribute(has_stochastic_depth_prob=True),
)
if version.parse(torchvision.__version__) >= version.parse("0.13.0"):
model_zoo.register(
name="torchvision_swin_s",
model_fn=swin_s,
data_gen_fn=data_gen_fn,
output_transform_fn=swin_s_output_output_transform_fn,
)
model_zoo.register(
name="torchvision_efficientnet_v2_s",
model_fn=tm.efficientnet_v2_s,
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
model_attribute=ModelAttribute(has_stochastic_depth_prob=True),
)