ColossalAI/colossalai/context/process_group_initializer/initializer_pipeline.py
ver217 96780e6ee4
Optimize pipeline schedule (#94)
* add pipeline shared module wrapper and update load batch

* added model parallel process group for amp and clip grad (#86)

* added model parallel process group for amp and clip grad

* update amp and clip with model parallel process group

* remove pipeline_prev/next group (#88)

* micro batch offload

* optimize pipeline gpu memory usage

* pipeline can receive tensor shape (#93)

* optimize pipeline gpu memory usage

* fix grad accumulation step counter

* rename classes and functions

Co-authored-by: Frank Lee <somerlee.9@gmail.com>
2021-12-30 15:56:46 +08:00

40 lines
1.5 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from torch import distributed as dist
from colossalai.registry import DIST_GROUP_INITIALIZER
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_Pipeline(ProcessGroupInitializer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.data_group_size = self.world_size // self.data_parallel_size
self.pipeline_stage_size = self.data_group_size // self.pipeline_parallel_size
def init_dist_group(self):
dist_settings = list()
for i in range(self.data_parallel_size):
for j in range(self.pipeline_stage_size):
pipe_ranks = list(
range(i * self.data_group_size + j,
(i + 1) * self.data_group_size,
self.pipeline_stage_size))
pipe_group_size = len(pipe_ranks)
pipe_group = dist.new_group(pipe_ranks)
if self.rank in pipe_ranks:
local_rank = pipe_ranks.index(self.rank)
group_world_size = pipe_group_size
process_group = pipe_group
ranks_in_group = pipe_ranks
dist_settings.append(
tuple((local_rank, group_world_size,
process_group, ranks_in_group,
ParallelMode.PIPELINE)))
return dist_settings