Files
ColossalAI/examples/inference/run_benchmark.sh
yuehuayingxueluo 86b63f720c [Inference]Adapted to the triton attn kernels (#5264)
* adapted to the triton attn kernels

* fix pad input

* adapted to copy_kv_to_blocked_cache

* fix ci test

* update kv memcpy

* remove print
2024-01-17 16:03:10 +08:00

34 lines
1.1 KiB
Bash
Executable File

ROOT=$(realpath $(dirname $0))
PY_SCRIPT=${ROOT}/benchmark_llama.py
GPU=$(nvidia-smi -L | head -1 | cut -d' ' -f4 | cut -d'-' -f1)
mode=$1
mkdir -p logs
CUDA_VISIBLE_DEVICES_set_n_least_memory_usage() {
local n=${1:-"9999"}
echo "GPU Memory Usage:"
local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv \
| tail -n +2 \
| nl -v 0 \
| tee /dev/tty \
| sort -g -k 2 \
| awk '{print $1}' \
| head -n $n)
export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g')
echo "Now CUDA_VISIBLE_DEVICES is set to:"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
}
CUDA_VISIBLE_DEVICES_set_n_least_memory_usage 1
# benchmark llama2-7b one single GPU
for bsz in 16 32 64; do
python3 ${PY_SCRIPT} -m llama2-7b --tp_size 1 --pp_size 1 -b $bsz -s 256 --output_len 128 --mode ${mode} | tee logs/${mode}_${GPU}_${bsz}_256.txt
done
for bsz in 16 32 64; do
python3 ${PY_SCRIPT} -m llama2-7b --tp_size 1 --pp_size 1 -b $bsz -s 1024 --output_len 128 --mode ${mode} | tee logs/${mode}_${GPU}_${bsz}_1024.txt
done