1
0
mirror of https://github.com/hpcaitech/ColossalAI.git synced 2025-04-30 04:35:17 +00:00
ColossalAI/colossalai/tensor/padded_tensor/api.py
flybird11111 a0ad587c24
[shardformer] refactor embedding resize ()
* [branch rebase] rebase main to Feature/resize_embedding ()

* fix

* [release] update version ()

* [hotfix] fix typo s/keywrods/keywords etc. ()

* [devops] fix compatibility ()

* [devops] fix compatibility

* [hotfix] update compatibility test on pr

* [devops] fix compatibility

* [devops] record duration during comp test

* [test] decrease test duration

* fix falcon

* [shardformer] fix gathering output when using tensor parallelism ()

* fix

* padding vocab_size when using pipeline parallellism

padding vocab_size when using pipeline parallellism

fix

fix

* fix

* fix

fix

fix

* fix gather output

* fix

* fix

* fix

fix resize embedding

fix resize embedding

* fix resize embedding

fix

* revert

* revert

* revert

* [doc] release Open-Sora 1.0 with model weights ()

* [doc] release Open-Sora 1.0 with model weights

* [doc] release Open-Sora 1.0 with model weights

* [doc] release Open-Sora 1.0 with model weights

* [doc] update open-sora demo ()

* [doc] update open-sora demo

* [doc] update open-sora demo

* [doc] update open-sora demo

* [example] add grok-1 inference ()

* [misc] add submodule

* remove submodule

* [example] support grok-1 tp inference

* [example] add grok-1 inference script

* [example] refactor code

* [example] add grok-1 readme

* [exmaple] add test ci

* [exmaple] update readme

---------

Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>

* [CI] run pre-commit ()

* fix

* [release] update version ()

* [hotfix] fix typo s/keywrods/keywords etc. ()

* [devops] fix compatibility ()

* [devops] fix compatibility

* [hotfix] update compatibility test on pr

* [devops] fix compatibility

* [devops] record duration during comp test

* [test] decrease test duration

* fix falcon

* [shardformer] fix gathering output when using tensor parallelism ()

* fix

* padding vocab_size when using pipeline parallellism

padding vocab_size when using pipeline parallellism

fix

fix

* fix

* fix

fix

fix

* fix gather output

* fix

* fix

* fix

fix resize embedding

fix resize embedding

* fix resize embedding

fix

* revert

* revert

* revert

* [doc] release Open-Sora 1.0 with model weights ()

* [doc] release Open-Sora 1.0 with model weights

* [doc] release Open-Sora 1.0 with model weights

* [doc] release Open-Sora 1.0 with model weights

* [doc] update open-sora demo ()

* [doc] update open-sora demo

* [doc] update open-sora demo

* [doc] update open-sora demo

* [example] add grok-1 inference ()

* [misc] add submodule

* remove submodule

* [example] support grok-1 tp inference

* [example] add grok-1 inference script

* [example] refactor code

* [example] add grok-1 readme

* [exmaple] add test ci

* [exmaple] update readme

* run pre-commit

---------

Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>

* [rebase] rebase main to resize-embedding ()

* [release] grok-1 314b inference ()

* [release] grok-1 inference

* [release] grok-1 inference

* [release] grok-1 inference

* [example] update Grok-1 inference ()

* revise grok-1 example

* remove unused arg in scripts

* prevent re-installing torch

* update readme

* revert modifying colossalai requirements

* add perf

* trivial

* add tokenizer url

* [hotfix] set return_outputs=False in examples and polish code ()

* fix: simplify merge_batch

* fix: use return_outputs=False to eliminate extra memory consumption

* feat: add return_outputs warning

* style: remove `return_outputs=False` as it is the default value

* [release] grok-1 inference benchmark ()

* [release] grok-1 inference benchmark

* [release] grok-1 inference benchmark

* [release] grok-1 inference benchmark

* [release] grok-1 inference benchmark

* [release] grok-1 inference benchmark

* [shardformer]Fix lm parallel. ()

* fix

* padding vocab_size when using pipeline parallellism

padding vocab_size when using pipeline parallellism

fix

fix

* fix

* fix

fix

fix

* fix gather output

* fix

* fix

* fix

fix resize embedding

fix resize embedding

* fix resize embedding

fix

* revert

* revert

* revert

* fix lm forward distribution

* fix

* test ci

* fix

* [fix] fix grok-1 example typo ()

* [devops] fix example test ci ()

* Fix ColoTensorSpec for py11 ()

* fixed layout converter caching and updated tester

* Empty-Commit

* [shardformer] update colo attention to support custom mask ()

* [feature] refactor colo attention ()

* [extension] update api

* [feature] add colo attention

* [feature] update sdpa

* [feature] update npu attention

* [feature] update flash-attn

* [test] add flash attn test

* [test] update flash attn test

* [shardformer] update modeling to fit colo attention ()

* [misc] refactor folder structure

* [shardformer] update llama flash-attn

* [shardformer] fix llama policy

* [devops] update tensornvme install

* [test] update llama test

* [shardformer] update colo attn kernel dispatch

* [shardformer] update blip2

* [shardformer] update chatglm

* [shardformer] update gpt2

* [shardformer] update gptj

* [shardformer] update opt

* [shardformer] update vit

* [shardformer] update colo attention mask prep

* [shardformer] update whisper

* [test] fix shardformer tests ()

* [test] fix shardformer tests

* [test] fix shardformer tests

* [format] applied code formatting on changed files in pull request 5510 ()

Co-authored-by: github-actions <github-actions@github.com>

* [shardformer] fix pipeline forward error if custom layer distribution is used ()

* Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution

* Change static methods for t5 layer distribution to member functions

* Change static methods for whisper layer distribution to member functions

* Replace whisper policy usage with self one

* Fix test case to use non-static layer distribution methods

* fix: fix typo

---------

Co-authored-by: Wenhao Chen <cwher@outlook.com>

* [Fix] Grok-1 use tokenizer from the same pretrained path ()

* [fix] use tokenizer from the same pretrained path

* trust remote code

* [ColossalChat] Update RLHF V2 ()

* Add dpo. Fix sft, ppo, lora. Refactor all

* fix and tested ppo

* 2 nd round refactor

* add ci tests

* fix ci

* fix ci

* fix readme, style

* fix readme style

* fix style, fix benchmark

* reproduce benchmark result, remove useless files

* rename to ColossalChat

* use new image

* fix ci workflow

* fix ci

* use local model/tokenizer for ci tests

* fix ci

* fix ci

* fix ci

* fix ci timeout

* fix rm progress bar. fix ci timeout

* fix ci

* fix ci typo

* remove 3d plugin from ci temporary

* test environment

* cannot save optimizer

* support chat template

* fix readme

* fix path

* test ci locally

* restore build_or_pr

* fix ci data path

* fix benchmark

* fix ci, move ci tests to 3080, disable fast tokenizer

* move ci to 85

* support flash attention 2

* add all-in-one data preparation script. Fix colossal-llama2-chat chat template

* add hardware requirements

* move ci test data

* fix save_model, add unwrap

* fix missing bos

* fix missing bos; support grad accumulation with gemini

* fix ci

* fix ci

* fix ci

* fix llama2 chat template config

* debug sft

* debug sft

* fix colossalai version requirement

* fix ci

* add sanity check to prevent NaN loss

* fix requirements

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* update readme

* update readme

* update readme and ignore

* fix logger bug

* support parallel_output

* modify data preparation logic

* fix tokenization

* update lr

* fix inference

* run pre-commit

---------

Co-authored-by: Tong Li <tong.li352711588@gmail.com>

* [shardformer, pipeline] add `gradient_checkpointing_ratio` and heterogenous shard policy for llama ()

* feat: add `GradientCheckpointConfig` and `PipelineGradientCheckpointConfig`

* feat: apply `GradientCheckpointConfig` to policy and llama_forward

* feat: move `distribute_layer` and `get_stage_index` to PipelineStageManager

* fix: add optional args for `distribute_layer` and `get_stage_index`

* fix: fix changed API calls

* test: update llama tests

* style: polish `GradientCheckpointConfig`

* fix: fix pipeline utils tests

* fix incorrect sharding without zero ()

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [shardformer] Sequence Parallelism Optimization ()

* sequence parallel optimization

* validate sequence parallel in llama (code to be polished)

* shardformer api writing

* integrate sequence parallel in ShardFormer

* fix pp bugs and sp bugs for LlaMa model

* integrating ring-based sequence parallelism into ShardFormer

* [sequence parallelism]: Add fused megatron function

* integrating ring-based sequence parallelism into ShardFormer

---------

Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>

* fix bugs when useing sp and flashattention together

* fix operation function name

* support flash attention for ulysses-style sp

* clarify sp process group

* fix compatibility bugs in moe plugin

* fix fused linear bugs

* fix linear layer test

* support gpt model all-to-all sp

* modify shard data dimension (meant to be dim=-1)

* support megtron-style sp and distributed attn for llama model

* [shardformer] add megatron sp to llama

* support llama7B 128k with distributed attention

* [shardformer] robustness enhancement

* add block attn

* sp mode 1: keep input as a complete sequence

* fix sp compatability

* finish sp mode 3 support for gpt

* using all_to_all_single when batch size is 1

* support mode 2 sp in gpt2 ()

* [shardformer] add megatron sp to llama

* support llama7B 128k with distributed attention

* [shardformer] robustness enhancement

* add block attn

* sp mode 1: keep input as a complete sequence

* fix sp compatability

* refactor ring implementation

* support mode 2 sp in gpt2

* polish code

* enable distributed attn mask when using sp mode 2 and 3 in llama

* automatically enable flash attn when using sp mode 2 and 3 in llama

* inplace attn mask

* add zero2 support for sequence parallel

* polish code

* fix bugs

* fix gemini checkpoint io

* loose tensor checking atol and rtol

* add comment

* fix llama layernorm grad

* fix zero grad

* fix zero grad

* fix conflict

* update split and gather auto grad func

* sequence parallel: inside text split ()

* polish code (part 1)

* polish code (part 2)

* polish code (part 2.5)

* polish code (part 3)

* sequence parallel: inside text split

* miscellaneous minor fixes

* polish code

* fix ulysses style ZeRO

* sequence parallel: inside text split

* miscellaneous minor fixes

* disaggregate sp group and dp group for  sp

* fix llama and gpt sp

* polish code

* move ulysses grad sync to ddp ()

* remove zero_stage and unbind the grad sync for alltoall sp

* add 2d group creation test

* move ulysses grad sync to ddp

* add 2d group creation test

* remove useless code

* change shard config not to enable sp when enable_all_optimizations

* add sp warnings for several model

* remove useless code

---------

Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>

* [hotfix] quick fixes to make legacy tutorials runnable ()

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [fix] fix typo s/muiti-node /multi-node etc. ()

* [hotfix] fix typo s/get_defualt_parser /get_default_parser ()

* [devops] remove post commit ci ()

* [devops] remove post commit ci

* [misc] run pre-commit on all files

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

---------

Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [shardformer]enable padding vocabulary size. ()

* padding vocab_size when using pipeline parallellism

padding vocab_size when using pipeline parallellism

fix

fix

* fix

* fix

fix

fix

* fix gather output

* fix

* fix

* fix

fix resize embedding

fix resize embedding

* fix resize embedding

fix

* revert

* revert

* revert

* padding vocab

* padding vocabe

* fix

* fix

* fxi

* test ci

* fix

fix

fix

fix

* fix

fix

* fix

* fix

* Update hybrid_parallel_plugin.py

fix

fix

fix

* fix

fix

* fix

fix

* fix

* resolve super init

resolve super init

resolve super init

resolve super init

* resolve comments

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* vocab checkpointio

* padding vocab_size when using pipeline parallellism

padding vocab_size when using pipeline parallellism

fix

fix

* fix

fix

fix

* fix

* fix

fix resize embedding

fix resize embedding

* fix resize embedding

fix

* revert

* revert

* padding vocab

* fix

* fix

fix

* fix

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* cherry-pick

* revert moe modify

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

fix

fix

fix

fix

fix

fix

fix

* resolve comments

resolve comments

resolve comments

resolve comments

resolve comments

* ptensor

ptensor

resolve comments

fix

fix

fix

fix

fix

resolve comments

resolve comments

resolve comments

resolve comments

resolve comments

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix rebase

* fix rebase

---------

Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-04-18 16:10:18 +08:00

129 lines
3.4 KiB
Python

import torch
def _hijack_detach_and_clone(ptensor: torch.Tensor) -> torch.Tensor:
"""
Hijack the detach and clone methods of the tensor to make sure the dist_layout is copied.
Args:
tensor (torch.Tensor): The tensor to be hijacked.
Returns:
torch.Tensor: The hijacked tensor.
"""
ptensor._unpad_detach = ptensor.detach
ptensor._unpad_clone = ptensor.clone
def new_detach(self):
t_ = self._unpad_detach()
t_._padding_dim = self._padding_dim
t_._origin_length = self._origin_length
t_._current_length = self._current_length
return t_
def new_clone(self, *args, **kwargs):
t_ = self._unpad_clone(*args, **kwargs)
t_._padding_dim = self._padding_dim
t_._origin_length = self._origin_length
t_._current_length = self._current_length
return t_
# bind the new methods to the tensor
ptensor.detach = new_detach.__get__(ptensor)
ptensor.clone = new_clone.__get__(ptensor)
return ptensor
def _hijack_back_detach_and_clone(ptensor: torch.Tensor) -> torch.Tensor:
"""
Hijack the detach and clone methods of the tensor to make sure the dist_layout is copied.
Args:
tensor (torch.Tensor): The tensor to be hijacked.
Returns:
torch.Tensor: The hijacked tensor.
"""
ptensor.detach = ptensor._unpad_detach
ptensor.clone = ptensor._unpad_clone
delattr(ptensor, "_unpad_detach")
delattr(ptensor, "_unpad_clone")
return ptensor
def is_padded_tensor(tensor: torch.Tensor) -> bool:
"""
Check whether the given tensor is a padding tensor.
Args:
tensor (torch.Tensor): The tensor to be checked.
Returns:
bool: Whether the given tensor is a padding tensor.
"""
return hasattr(tensor, "_padding_dim")
def to_padded_tensor(
tensor: torch.Tensor,
current_length: int,
padding_dim: int,
) -> torch.Tensor:
assert (
padding_dim < tensor.dim()
), f"Please passing a valid padding_dim. the dimension of the tensor is {tensor.dim()}"
if is_padded_tensor(tensor):
return tensor
origin_length = tensor.shape[padding_dim]
padding_num = current_length - origin_length
padding_data = torch.zeros(
*tensor.shape[:padding_dim],
padding_num,
*tensor.shape[padding_dim + 1 :],
device=tensor.device,
dtype=tensor.dtype,
)
tensor.data = torch.cat((tensor.data, padding_data), dim=padding_dim).contiguous()
tensor._padding_dim = padding_dim
tensor._origin_length = origin_length
tensor._current_length = current_length
_hijack_detach_and_clone(tensor)
return tensor
def to_unpadded_tensor(ptensor: torch.Tensor):
if not is_padded_tensor(ptensor):
return ptensor
unpad_slices = [slice(None)] * ptensor.dim()
unpad_slices[ptensor._padding_dim] = slice(None, ptensor._origin_length)
ptensor.data = ptensor.data[tuple(unpad_slices)]
delattr(ptensor, "_padding_dim")
delattr(ptensor, "_origin_length")
delattr(ptensor, "_current_length")
_hijack_back_detach_and_clone(ptensor)
return ptensor
def init_as_padded_tensor(tensor: torch.Tensor, current_length: int, origin_length: int, padding_dim: int):
if is_padded_tensor(tensor):
return tensor
tensor._padding_dim = padding_dim
tensor._origin_length = origin_length
tensor._current_length = current_length
_hijack_detach_and_clone(tensor)
return tensor