mirror of
				https://github.com/hpcaitech/ColossalAI.git
				synced 2025-10-31 13:59:23 +00:00 
			
		
		
		
	* sharded model supports reuse fp16 shard * rename variable * polish code * polish code * polish code
		
			
				
	
	
		
			135 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			135 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from functools import partial
 | |
| 
 | |
| import torch
 | |
| import torch.distributed as dist
 | |
| from colossalai.logging import get_dist_logger
 | |
| from colossalai.utils import checkpoint
 | |
| from colossalai.zero.shard_utils import TensorShardStrategy
 | |
| from colossalai.zero.sharded_model import ShardedModelV2
 | |
| 
 | |
| LOGGER = get_dist_logger('zero_test')
 | |
| 
 | |
| MP_PARALLEL_CONFIG = dict(fp16=dict(mode=None,), parallel=dict(pipeline=dict(size=1), tensor=dict(size=2, mode=None)))
 | |
| 
 | |
| _ZERO_MODEL_CONFIG = dict(reduce_scatter_bucket_size_mb=25,
 | |
|                           fp32_reduce_scatter=False,
 | |
|                           offload_config=None,
 | |
|                           gradient_predivide_factor=1.0,
 | |
|                           use_memory_tracer=False,
 | |
|                           shard_strategy=TensorShardStrategy(),
 | |
|                           reuse_fp16_shard=False)
 | |
| 
 | |
| _ZERO_OPTIMIZER_CONFIG = dict(cpu_offload=False,
 | |
|                               initial_scale=2**5,
 | |
|                               min_scale=1,
 | |
|                               growth_factor=2,
 | |
|                               backoff_factor=0.5,
 | |
|                               growth_interval=1000,
 | |
|                               hysteresis=2,
 | |
|                               max_scale=2**32)
 | |
| 
 | |
| ZERO_PARALLEL_CONFIG = dict(fp16=dict(mode=None,),
 | |
|                             zero=dict(
 | |
|                                 model_config=_ZERO_MODEL_CONFIG,
 | |
|                                 optimizer_config=_ZERO_OPTIMIZER_CONFIG,
 | |
|                             ),
 | |
|                             parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)))
 | |
| 
 | |
| CONFIG = dict(fp16=dict(mode=None,),
 | |
|               zero=dict(level=3,
 | |
|                         verbose=False,
 | |
|                         offload_optimizer_config=dict(device='cpu', pin_memory=True, buffer_count=5, fast_init=False),
 | |
|                         offload_param_config=dict(device='cpu',
 | |
|                                                   pin_memory=True,
 | |
|                                                   buffer_count=5,
 | |
|                                                   buffer_size=1e8,
 | |
|                                                   max_in_cpu=1e9)),
 | |
|               parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)))
 | |
| 
 | |
| 
 | |
| def run_fwd_bwd(model, data, label, criterion, enable_autocast=False):
 | |
|     model.train()
 | |
|     with torch.cuda.amp.autocast(enabled=enable_autocast):
 | |
|         if criterion:
 | |
|             y = model(data)
 | |
|             loss = criterion(y, label)
 | |
|         else:
 | |
|             loss = model(data, label)
 | |
|         loss = loss.float()
 | |
|     if isinstance(model, ShardedModelV2):
 | |
|         model.backward(loss)
 | |
|     else:
 | |
|         loss.backward()
 | |
| 
 | |
| 
 | |
| def checkpoint_wrapper(module, enable=True):
 | |
|     if enable:
 | |
|         module.forward = partial(checkpoint, module.forward)
 | |
|     return module
 | |
| 
 | |
| 
 | |
| def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool:
 | |
|     if loose:
 | |
|         return torch.allclose(tensor_a, tensor_b, atol=1e-2, rtol=1e-3)
 | |
|     return torch.allclose(tensor_a, tensor_b)
 | |
| 
 | |
| 
 | |
| def check_grads(model, zero_model, loose=False):
 | |
|     for p, zero_p in zip(model.parameters(), zero_model.parameters()):
 | |
|         zero_grad = zero_p.grad.clone().to(p.device)
 | |
|         grad = p.grad.float()
 | |
|         assert grad.dtype == zero_grad.dtype
 | |
|         assert allclose(grad, zero_grad, loose=loose)
 | |
| 
 | |
| 
 | |
| def check_params(model, zero_model, loose=False):
 | |
|     for p, zero_p in zip(model.parameters(), zero_model.parameters()):
 | |
|         zero_p = zero_p.clone().to(p.device)
 | |
|         # assert p.dtype == zero_p.dtype
 | |
|         assert allclose(p.float(), zero_p.float(), loose=loose), f"diff {p.float() - zero_p.float()}"
 | |
| 
 | |
| 
 | |
| def check_grads_padding(model, zero_model, loose=False):
 | |
|     rank = dist.get_rank()
 | |
|     for p, zero_p in zip(model.parameters(), zero_model.parameters()):
 | |
|         zero_grad = zero_p.grad.clone().to(p.device)
 | |
|         chunks = torch.flatten(p.grad).chunk(dist.get_world_size())
 | |
|         if rank >= len(chunks):
 | |
|             continue
 | |
|         grad = chunks[rank].float()
 | |
|         if zero_grad.size(0) > grad.size(0):
 | |
|             zero_grad = zero_grad[:grad.size(0)]
 | |
|         assert grad.dtype == zero_grad.dtype
 | |
|         assert allclose(grad, zero_grad, loose=loose), f'diff: {grad - zero_grad}'
 | |
| 
 | |
| 
 | |
| def check_params_padding(model, zero_model, loose=False):
 | |
|     rank = dist.get_rank()
 | |
|     for p, zero_p in zip(model.parameters(), zero_model.parameters()):
 | |
|         zero_p = zero_p.clone().to(p.device)
 | |
|         chunks = torch.flatten(p).chunk(dist.get_world_size())
 | |
|         if rank >= len(chunks):
 | |
|             continue
 | |
|         p = chunks[rank]
 | |
|         if zero_p.size(0) > p.size(0):
 | |
|             zero_p = zero_p[:p.size(0)]
 | |
|         assert p.dtype == zero_p.dtype
 | |
|         assert allclose(p, zero_p, loose=loose)
 | |
| 
 | |
| 
 | |
| def check_sharded_model_params(model, zero_model, loose=False, reuse_fp16_shard=False):
 | |
|     rank = dist.get_rank()
 | |
|     for p, zero_p in zip(model.parameters(), zero_model.parameters()):
 | |
|         if reuse_fp16_shard:
 | |
|             zero_p = zero_p.data.to(p.device).float()
 | |
|         else:
 | |
|             zero_p = zero_p.col_attr.sharded_data_tensor.payload.to(p.device).float()
 | |
|         chunks = torch.flatten(p).chunk(dist.get_world_size())
 | |
|         if rank >= len(chunks):
 | |
|             continue
 | |
|         p = chunks[rank].float()
 | |
|         if zero_p.size(0) > p.size(0):
 | |
|             zero_p = zero_p[:p.size(0)]
 | |
|         assert p.dtype == zero_p.dtype
 | |
|         assert allclose(p, zero_p, loose=loose), f'{p} vs {zero_p}'
 |