ColossalAI/tests/test_tensor/test_linear_tp.py
Jiarui Fang ac88de6dfc
[WIP] Applying ColoTensor on TP-1D-row Linear. (#831)
* revert zero tensors back

* [tensor] init row 1d linear
2022-04-22 14:03:26 +08:00

75 lines
2.2 KiB
Python

from joblib import Parallel
from numpy import allclose, require
import torch
from colossalai.context.parallel_mode import ParallelMode
from colossalai.tensor import ColoTensor
from copy import deepcopy
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.logging import get_dist_logger
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.core import global_context as gpc
def run_linear_tp1d_row_test():
in_dim = 4
out_dim = 5
fc = torch.nn.Linear(in_dim, out_dim, bias=True)
fc_ref = deepcopy(fc)
input_ref = torch.randn(1, in_dim)
input_tensor = input_ref.clone()
# sharded_weight = ColoTensor.init_from_torch_tensor(fc_ref.weight, "1Drow")
# shard weight at begiin
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
sharded_weight = ColoTensor(in_dim / world_size, out_dim, shard_spec="1Drow")
sharded_bias = ColoTensor.init_from_torch_tensor(fc_ref.bias)
# replace the torch nn.Parameters with ShardedTensor
delattr(fc, 'weight')
setattr(fc, 'weight', sharded_weight)
delattr(fc, 'bias')
setattr(fc, 'bias', sharded_bias)
fc.weight.requires_grad = True
fc.bias.requires_grad = True
# torch.nn.functional.linear(torch.randn(1, in_dim), sharded_weight, sharded_bias)
out = fc(input_tensor)
loss = out.sum()
loss.backward()
out_ref = fc_ref(input_ref)
loss_ref = out_ref.sum()
loss_ref.backward()
assert (loss_ref == loss)
assert allclose(fc_ref.weight.grad, fc.weight.torch_tensor().grad)
def run_dist(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_linear_tp1d_row_test()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [4])
@rerun_if_address_is_in_use()
def test_linear_1d(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_linear_1d(4)