ColossalAI/examples/tutorial/sequence_parallel/config.py
Hongxin Liu b5f9e37c70
[legacy] clean up legacy code (#4743)
* [legacy] remove outdated codes of pipeline (#4692)

* [legacy] remove cli of benchmark and update optim (#4690)

* [legacy] remove cli of benchmark and update optim

* [doc] fix cli doc test

* [legacy] fix engine clip grad norm

* [legacy] remove outdated colo tensor (#4694)

* [legacy] remove outdated colo tensor

* [test] fix test import

* [legacy] move outdated zero to legacy (#4696)

* [legacy] clean up utils (#4700)

* [legacy] clean up utils

* [example] update examples

* [legacy] clean up amp

* [legacy] fix amp module

* [legacy] clean up gpc (#4742)

* [legacy] clean up context

* [legacy] clean core, constants and global vars

* [legacy] refactor initialize

* [example] fix examples ci

* [example] fix examples ci

* [legacy] fix tests

* [example] fix gpt example

* [example] fix examples ci

* [devops] fix ci installation

* [example] fix examples ci
2023-09-18 16:31:06 +08:00

36 lines
690 B
Python

from colossalai.legacy.amp import AMP_TYPE
# hyper-parameters
TRAIN_ITERS = 10
DECAY_ITERS = 4
WARMUP_FRACTION = 0.01
GLOBAL_BATCH_SIZE = 32 # dp world size * sentences per GPU
EVAL_ITERS = 10
EVAL_INTERVAL = 10
LR = 0.0001
MIN_LR = 1e-05
WEIGHT_DECAY = 0.01
SEQ_LENGTH = 128
# BERT config
DEPTH = 4
NUM_ATTENTION_HEADS = 4
HIDDEN_SIZE = 128
# model config
ADD_BINARY_HEAD = False
# random seed
SEED = 1234
# pipeline config
# only enabled when pipeline > 1
NUM_MICRO_BATCHES = 4
# colossalai config
parallel = dict(pipeline=1, tensor=dict(size=2, mode='sequence'))
fp16 = dict(mode=AMP_TYPE.NAIVE, verbose=True)
gradient_handler = [dict(type='SequenceParallelGradientHandler')]