ColossalAI/colossalai/inference/tensor_parallel/kvcache_manager.py
Cuiqing Li bce0f16702
[Feature] The first PR to Add TP inference engine, kv-cache manager and related kernels for our inference system (#4577)
* [infer] Infer/llama demo (#4503)

* add

* add infer example

* finish

* finish

* stash

* fix

* [Kernels]  add inference token attention kernel (#4505)

* add token forward

* fix tests

* fix comments

* add try import triton

* add adapted license

* add tests check

* [Kernels] add necessary kernels (llama & bloom) for attention forward and kv-cache manager  (#4485)

* added _vllm_rms_norm

* change place

* added tests

* added tests

* modify

* adding kernels

* added tests:

* adding kernels

* modify

* added

* updating kernels

* adding tests

* added tests

* kernel change

* submit

* modify

* added

* edit comments

* change name

* change commnets and fix import

* add

* added

* combine codes (#4509)

* [feature] add KV cache manager for llama & bloom inference (#4495)

* add kv cache memory manager

* add stateinfo during inference

* format

* format

* rename file

* add kv cache test

* revise on BatchInferState

* file dir change

* [Bug FIx] import llama context ops fix (#4524)

* added _vllm_rms_norm

* change place

* added tests

* added tests

* modify

* adding kernels

* added tests:

* adding kernels

* modify

* added

* updating kernels

* adding tests

* added tests

* kernel change

* submit

* modify

* added

* edit comments

* change name

* change commnets and fix import

* add

* added

* fix

* add ops into init.py

* add

* [Infer] Add TPInferEngine and fix file path (#4532)

* add engine for TP inference

* move file path

* update path

* fix TPInferEngine

* remove unused file

* add engine test demo

* revise TPInferEngine

* fix TPInferEngine, add test

* fix

* Add Inference test for llama (#4508)

* add kv cache memory manager

* add stateinfo during inference

* add

* add infer example

* finish

* finish

* format

* format

* rename file

* add kv cache test

* revise on BatchInferState

* add inference test for llama

* fix conflict

* feature: add some new features for llama engine

* adapt colossalai triton interface

* Change the parent class of llama  policy

* add nvtx

* move llama inference code to tensor_parallel

* fix __init__.py

* rm tensor_parallel

* fix: fix bugs in auto_policy.py

* fix:rm some unused codes

* mv colossalai/tpinference to colossalai/inference/tensor_parallel

* change __init__.py

* save change

* fix engine

* Bug fix: Fix hang

* remove llama_infer_engine.py

---------

Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>

* [infer] Add Bloom inference policy and replaced methods (#4512)

* add bloom inference methods and policy

* enable pass BatchInferState from model forward

* revise bloom infer layers/policies

* add engine for inference (draft)

* add test for bloom infer

* fix bloom infer policy and flow

* revise bloom test

* fix bloom file path

* remove unused codes

* fix bloom modeling

* fix dir typo

* fix trivial

* fix policy

* clean pr

* trivial fix

* Revert "[infer] Add Bloom inference policy and replaced methods (#4512)" (#4552)

This reverts commit 17cfa57140.

* [Doc] Add colossal inference doc (#4549)

* create readme

* add readme.md

* fix typos

* [infer] Add Bloom inference policy and replaced methods (#4553)

* add bloom inference methods and policy

* enable pass BatchInferState from model forward

* revise bloom infer layers/policies

* add engine for inference (draft)

* add test for bloom infer

* fix bloom infer policy and flow

* revise bloom test

* fix bloom file path

* remove unused codes

* fix bloom modeling

* fix dir typo

* fix trivial

* fix policy

* clean pr

* trivial fix

* trivial

* Fix Bugs In Llama Model Forward (#4550)

* add kv cache memory manager

* add stateinfo during inference

* add

* add infer example

* finish

* finish

* format

* format

* rename file

* add kv cache test

* revise on BatchInferState

* add inference test for llama

* fix conflict

* feature: add some new features for llama engine

* adapt colossalai triton interface

* Change the parent class of llama  policy

* add nvtx

* move llama inference code to tensor_parallel

* fix __init__.py

* rm tensor_parallel

* fix: fix bugs in auto_policy.py

* fix:rm some unused codes

* mv colossalai/tpinference to colossalai/inference/tensor_parallel

* change __init__.py

* save change

* fix engine

* Bug fix: Fix hang

* remove llama_infer_engine.py

* bug fix: fix bugs about infer_state.is_context_stage

* remove pollcies

* fix: delete unused code

* fix: delete unused code

* remove unused coda

* fix conflict

---------

Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>

* [doc] add colossal inference fig (#4554)

* create readme

* add readme.md

* fix typos

* upload fig

* [NFC] fix docstring for colossal inference (#4555)

Fix docstring and comments in kv cache manager and bloom modeling

* fix docstring in llama modeling (#4557)

* [Infer] check import vllm (#4559)

* change import vllm

* import apply_rotary_pos_emb

* change import location

* [DOC] add installation req (#4561)

* add installation req

* fix

* slight change

* remove empty

* [Feature] rms-norm transfer into inference llama.py  (#4563)

* add installation req

* fix

* slight change

* remove empty

* add rmsnorm polciy

* add

* clean codes

* [infer] Fix tp inference engine (#4564)

* fix engine prepare data

* add engine test

* use bloom for testing

* revise on test

* revise on test

* reset shardformer llama (#4569)

* [infer] Fix engine - tensors on different devices (#4570)


* fix diff device in engine

* [codefactor] Feature/colossal inference (#4579)

* code factors

* remove

* change coding (#4581)

* [doc] complete README of colossal inference (#4585)

* complete fig

* Update README.md

* [doc]update readme (#4586)

* update readme

* Update README.md

* bug fix: fix bus in llama and bloom (#4588)

* [BUG FIX]Fix test engine in CI and non-vllm kernels llama forward  (#4592)

* fix tests

* clean

* clean

* fix bugs

* add

* fix llama non-vllm kernels bug

* modify

* clean codes

* [Kernel]Rmsnorm fix (#4598)

* fix tests

* clean

* clean

* fix bugs

* add

* fix llama non-vllm kernels bug

* modify

* clean codes

* add triton rmsnorm

* delete vllm kernel flag

* [Bug Fix]Fix bugs in llama (#4601)

* fix tests

* clean

* clean

* fix bugs

* add

* fix llama non-vllm kernels bug

* modify

* clean codes

* bug fix: remove rotary_positions_ids

---------

Co-authored-by: cuiqing.li <lixx3527@gmail.com>

* [kernel] Add triton layer norm & replace norm for bloom (#4609)

* add layernorm for inference

* add test for layernorm kernel

* add bloom layernorm replacement policy

* trivial: path

* [Infer] Bug fix rotary embedding in llama (#4608)

* fix rotary embedding

* delete print

* fix init seq len bug

* rename pytest

* add benchmark for llama

* refactor codes

* delete useless code

* [bench] Add bloom inference benchmark (#4621)

* add bloom benchmark

* readme - update benchmark res

* trivial - uncomment for testing (#4622)

* [Infer] add check triton and cuda version for tests (#4627)

* fix rotary embedding

* delete print

* fix init seq len bug

* rename pytest

* add benchmark for llama

* refactor codes

* delete useless code

* add check triton and cuda

* Update sharder.py (#4629)

* [Inference] Hot fix some bugs and typos (#4632)

* fix

* fix test

* fix conflicts

* [typo]Comments fix (#4633)

* fallback

* fix commnets

* bug fix: fix some bugs in test_llama and test_bloom (#4635)

* [Infer] delete benchmark in tests and fix bug for llama and bloom (#4636)

* fix rotary embedding

* delete print

* fix init seq len bug

* rename pytest

* add benchmark for llama

* refactor codes

* delete useless code

* add check triton and cuda

* delete benchmark and fix infer bugs

* delete benchmark for tests

* delete useless code

* delete bechmark function in utils

* [Fix] Revise TPInferEngine, inference tests and benchmarks (#4642)

* [Fix] revise TPInferEngine methods and inference tests

* fix llama/bloom infer benchmarks

* fix infer tests

* trivial fix: benchmakrs

* trivial

* trivial: rm print

* modify utils filename for infer ops test (#4657)

* [Infer] Fix TPInferEngine init & inference tests, benchmarks (#4670)

* fix engine funcs

* TPInferEngine: receive shard config in init

* benchmarks: revise TPInferEngine init

* benchmarks: remove pytest decorator

* trivial fix

* use small model for tests

* [NFC] use args for infer benchmarks (#4674)

* revise infer default (#4683)

* [Fix] optimize/shard model in TPInferEngine init (#4684)

* remove using orig model in engine

* revise inference tests

* trivial: rename

---------

Co-authored-by: Jianghai <72591262+CjhHa1@users.noreply.github.com>
Co-authored-by: Xu Kai <xukai16@foxmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
2023-09-12 01:22:56 +08:00

102 lines
4.6 KiB
Python

# Adapted from lightllm/common/mem_manager.py
# of the ModelTC/lightllm GitHub repository
# https://github.com/ModelTC/lightllm/blob/050af3ce65edca617e2f30ec2479397d5bb248c9/lightllm/common/mem_manager.py
import torch
from transformers.utils import logging
class MemoryManager:
r"""
Manage token block indexes and allocate physical memory for key and value cache
Args:
size: maximum token number used as the size of key and value buffer
dtype: data type of cached key and value
head_num: number of heads the memory manager is responsible for
head_dim: embedded size per head
layer_num: the number of layers in the model
device: device used to store the key and value cache
"""
def __init__(self,
size: int,
dtype: torch.dtype,
head_num: int,
head_dim: int,
layer_num: int,
device: torch.device = torch.device('cuda')):
self.logger = logging.get_logger(__name__)
self.available_size = size
self.past_key_values_length = 0
self._init_mem_states(size, device)
self._init_kv_buffers(size, device, dtype, head_num, head_dim, layer_num)
def _init_mem_states(self, size, device):
""" Initialize tensors used to manage memory states """
self.mem_state = torch.ones((size,), dtype=torch.bool, device=device)
self.mem_cum_sum = torch.empty((size,), dtype=torch.int32, device=device)
self.indexes = torch.arange(0, size, dtype=torch.long, device=device)
def _init_kv_buffers(self, size, device, dtype, head_num, head_dim, layer_num):
""" Initialize key buffer and value buffer on specified device """
self.key_buffer = [
torch.empty((size, head_num, head_dim), dtype=dtype, device=device) for _ in range(layer_num)
]
self.value_buffer = [
torch.empty((size, head_num, head_dim), dtype=dtype, device=device) for _ in range(layer_num)
]
@torch.no_grad()
def alloc(self, required_size):
""" allocate space of required_size by providing indexes representing available physical spaces """
if required_size > self.available_size:
self.logger.warning(f"No enough cache: required_size {required_size} "
f"left_size {self.available_size}")
return None
torch.cumsum(self.mem_state, dim=0, dtype=torch.int32, out=self.mem_cum_sum)
select_index = torch.logical_and(self.mem_cum_sum <= required_size, self.mem_state == 1)
select_index = self.indexes[select_index]
self.mem_state[select_index] = 0
self.available_size -= len(select_index)
return select_index
@torch.no_grad()
def alloc_contiguous(self, required_size):
""" allocate contiguous space of required_size """
if required_size > self.available_size:
self.logger.warning(f"No enough cache: required_size {required_size} "
f"left_size {self.available_size}")
return None
torch.cumsum(self.mem_state, dim=0, dtype=torch.int32, out=self.mem_cum_sum)
sum_size = len(self.mem_cum_sum)
loc_sums = self.mem_cum_sum[required_size - 1:] - self.mem_cum_sum[0:sum_size - required_size +
1] + self.mem_state[0:sum_size -
required_size + 1]
can_used_loc = self.indexes[0:sum_size - required_size + 1][loc_sums == required_size]
if can_used_loc.shape[0] == 0:
self.logger.info(f"No enough contiguous cache: required_size {required_size} "
f"left_size {self.available_size}")
return None
start_loc = can_used_loc[0]
select_index = self.indexes[start_loc:start_loc + required_size]
self.mem_state[select_index] = 0
self.available_size -= len(select_index)
start = start_loc.item()
end = start + required_size
return select_index, start, end
@torch.no_grad()
def free(self, free_index):
""" free memory by updating memory states based on given indexes """
self.available_size += free_index.shape[0]
self.mem_state[free_index] = 1
@torch.no_grad()
def free_all(self):
""" free all memory by updating memory states """
self.available_size = len(self.mem_state)
self.mem_state[:] = 1
self.past_key_values_length = 0
self.logger.info("freed all space of memory manager")