mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-04-28 11:45:23 +00:00
* [infer] Infer/llama demo (#4503)
* add
* add infer example
* finish
* finish
* stash
* fix
* [Kernels] add inference token attention kernel (#4505)
* add token forward
* fix tests
* fix comments
* add try import triton
* add adapted license
* add tests check
* [Kernels] add necessary kernels (llama & bloom) for attention forward and kv-cache manager (#4485)
* added _vllm_rms_norm
* change place
* added tests
* added tests
* modify
* adding kernels
* added tests:
* adding kernels
* modify
* added
* updating kernels
* adding tests
* added tests
* kernel change
* submit
* modify
* added
* edit comments
* change name
* change commnets and fix import
* add
* added
* combine codes (#4509)
* [feature] add KV cache manager for llama & bloom inference (#4495)
* add kv cache memory manager
* add stateinfo during inference
* format
* format
* rename file
* add kv cache test
* revise on BatchInferState
* file dir change
* [Bug FIx] import llama context ops fix (#4524)
* added _vllm_rms_norm
* change place
* added tests
* added tests
* modify
* adding kernels
* added tests:
* adding kernels
* modify
* added
* updating kernels
* adding tests
* added tests
* kernel change
* submit
* modify
* added
* edit comments
* change name
* change commnets and fix import
* add
* added
* fix
* add ops into init.py
* add
* [Infer] Add TPInferEngine and fix file path (#4532)
* add engine for TP inference
* move file path
* update path
* fix TPInferEngine
* remove unused file
* add engine test demo
* revise TPInferEngine
* fix TPInferEngine, add test
* fix
* Add Inference test for llama (#4508)
* add kv cache memory manager
* add stateinfo during inference
* add
* add infer example
* finish
* finish
* format
* format
* rename file
* add kv cache test
* revise on BatchInferState
* add inference test for llama
* fix conflict
* feature: add some new features for llama engine
* adapt colossalai triton interface
* Change the parent class of llama policy
* add nvtx
* move llama inference code to tensor_parallel
* fix __init__.py
* rm tensor_parallel
* fix: fix bugs in auto_policy.py
* fix:rm some unused codes
* mv colossalai/tpinference to colossalai/inference/tensor_parallel
* change __init__.py
* save change
* fix engine
* Bug fix: Fix hang
* remove llama_infer_engine.py
---------
Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
* [infer] Add Bloom inference policy and replaced methods (#4512)
* add bloom inference methods and policy
* enable pass BatchInferState from model forward
* revise bloom infer layers/policies
* add engine for inference (draft)
* add test for bloom infer
* fix bloom infer policy and flow
* revise bloom test
* fix bloom file path
* remove unused codes
* fix bloom modeling
* fix dir typo
* fix trivial
* fix policy
* clean pr
* trivial fix
* Revert "[infer] Add Bloom inference policy and replaced methods (#4512)" (#4552)
This reverts commit 17cfa57140
.
* [Doc] Add colossal inference doc (#4549)
* create readme
* add readme.md
* fix typos
* [infer] Add Bloom inference policy and replaced methods (#4553)
* add bloom inference methods and policy
* enable pass BatchInferState from model forward
* revise bloom infer layers/policies
* add engine for inference (draft)
* add test for bloom infer
* fix bloom infer policy and flow
* revise bloom test
* fix bloom file path
* remove unused codes
* fix bloom modeling
* fix dir typo
* fix trivial
* fix policy
* clean pr
* trivial fix
* trivial
* Fix Bugs In Llama Model Forward (#4550)
* add kv cache memory manager
* add stateinfo during inference
* add
* add infer example
* finish
* finish
* format
* format
* rename file
* add kv cache test
* revise on BatchInferState
* add inference test for llama
* fix conflict
* feature: add some new features for llama engine
* adapt colossalai triton interface
* Change the parent class of llama policy
* add nvtx
* move llama inference code to tensor_parallel
* fix __init__.py
* rm tensor_parallel
* fix: fix bugs in auto_policy.py
* fix:rm some unused codes
* mv colossalai/tpinference to colossalai/inference/tensor_parallel
* change __init__.py
* save change
* fix engine
* Bug fix: Fix hang
* remove llama_infer_engine.py
* bug fix: fix bugs about infer_state.is_context_stage
* remove pollcies
* fix: delete unused code
* fix: delete unused code
* remove unused coda
* fix conflict
---------
Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
* [doc] add colossal inference fig (#4554)
* create readme
* add readme.md
* fix typos
* upload fig
* [NFC] fix docstring for colossal inference (#4555)
Fix docstring and comments in kv cache manager and bloom modeling
* fix docstring in llama modeling (#4557)
* [Infer] check import vllm (#4559)
* change import vllm
* import apply_rotary_pos_emb
* change import location
* [DOC] add installation req (#4561)
* add installation req
* fix
* slight change
* remove empty
* [Feature] rms-norm transfer into inference llama.py (#4563)
* add installation req
* fix
* slight change
* remove empty
* add rmsnorm polciy
* add
* clean codes
* [infer] Fix tp inference engine (#4564)
* fix engine prepare data
* add engine test
* use bloom for testing
* revise on test
* revise on test
* reset shardformer llama (#4569)
* [infer] Fix engine - tensors on different devices (#4570)
* fix diff device in engine
* [codefactor] Feature/colossal inference (#4579)
* code factors
* remove
* change coding (#4581)
* [doc] complete README of colossal inference (#4585)
* complete fig
* Update README.md
* [doc]update readme (#4586)
* update readme
* Update README.md
* bug fix: fix bus in llama and bloom (#4588)
* [BUG FIX]Fix test engine in CI and non-vllm kernels llama forward (#4592)
* fix tests
* clean
* clean
* fix bugs
* add
* fix llama non-vllm kernels bug
* modify
* clean codes
* [Kernel]Rmsnorm fix (#4598)
* fix tests
* clean
* clean
* fix bugs
* add
* fix llama non-vllm kernels bug
* modify
* clean codes
* add triton rmsnorm
* delete vllm kernel flag
* [Bug Fix]Fix bugs in llama (#4601)
* fix tests
* clean
* clean
* fix bugs
* add
* fix llama non-vllm kernels bug
* modify
* clean codes
* bug fix: remove rotary_positions_ids
---------
Co-authored-by: cuiqing.li <lixx3527@gmail.com>
* [kernel] Add triton layer norm & replace norm for bloom (#4609)
* add layernorm for inference
* add test for layernorm kernel
* add bloom layernorm replacement policy
* trivial: path
* [Infer] Bug fix rotary embedding in llama (#4608)
* fix rotary embedding
* delete print
* fix init seq len bug
* rename pytest
* add benchmark for llama
* refactor codes
* delete useless code
* [bench] Add bloom inference benchmark (#4621)
* add bloom benchmark
* readme - update benchmark res
* trivial - uncomment for testing (#4622)
* [Infer] add check triton and cuda version for tests (#4627)
* fix rotary embedding
* delete print
* fix init seq len bug
* rename pytest
* add benchmark for llama
* refactor codes
* delete useless code
* add check triton and cuda
* Update sharder.py (#4629)
* [Inference] Hot fix some bugs and typos (#4632)
* fix
* fix test
* fix conflicts
* [typo]Comments fix (#4633)
* fallback
* fix commnets
* bug fix: fix some bugs in test_llama and test_bloom (#4635)
* [Infer] delete benchmark in tests and fix bug for llama and bloom (#4636)
* fix rotary embedding
* delete print
* fix init seq len bug
* rename pytest
* add benchmark for llama
* refactor codes
* delete useless code
* add check triton and cuda
* delete benchmark and fix infer bugs
* delete benchmark for tests
* delete useless code
* delete bechmark function in utils
* [Fix] Revise TPInferEngine, inference tests and benchmarks (#4642)
* [Fix] revise TPInferEngine methods and inference tests
* fix llama/bloom infer benchmarks
* fix infer tests
* trivial fix: benchmakrs
* trivial
* trivial: rm print
* modify utils filename for infer ops test (#4657)
* [Infer] Fix TPInferEngine init & inference tests, benchmarks (#4670)
* fix engine funcs
* TPInferEngine: receive shard config in init
* benchmarks: revise TPInferEngine init
* benchmarks: remove pytest decorator
* trivial fix
* use small model for tests
* [NFC] use args for infer benchmarks (#4674)
* revise infer default (#4683)
* [Fix] optimize/shard model in TPInferEngine init (#4684)
* remove using orig model in engine
* revise inference tests
* trivial: rename
---------
Co-authored-by: Jianghai <72591262+CjhHa1@users.noreply.github.com>
Co-authored-by: Xu Kai <xukai16@foxmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
102 lines
4.6 KiB
Python
102 lines
4.6 KiB
Python
# Adapted from lightllm/common/mem_manager.py
|
|
# of the ModelTC/lightllm GitHub repository
|
|
# https://github.com/ModelTC/lightllm/blob/050af3ce65edca617e2f30ec2479397d5bb248c9/lightllm/common/mem_manager.py
|
|
|
|
import torch
|
|
from transformers.utils import logging
|
|
|
|
|
|
class MemoryManager:
|
|
r"""
|
|
Manage token block indexes and allocate physical memory for key and value cache
|
|
|
|
Args:
|
|
size: maximum token number used as the size of key and value buffer
|
|
dtype: data type of cached key and value
|
|
head_num: number of heads the memory manager is responsible for
|
|
head_dim: embedded size per head
|
|
layer_num: the number of layers in the model
|
|
device: device used to store the key and value cache
|
|
"""
|
|
|
|
def __init__(self,
|
|
size: int,
|
|
dtype: torch.dtype,
|
|
head_num: int,
|
|
head_dim: int,
|
|
layer_num: int,
|
|
device: torch.device = torch.device('cuda')):
|
|
self.logger = logging.get_logger(__name__)
|
|
self.available_size = size
|
|
self.past_key_values_length = 0
|
|
self._init_mem_states(size, device)
|
|
self._init_kv_buffers(size, device, dtype, head_num, head_dim, layer_num)
|
|
|
|
def _init_mem_states(self, size, device):
|
|
""" Initialize tensors used to manage memory states """
|
|
self.mem_state = torch.ones((size,), dtype=torch.bool, device=device)
|
|
self.mem_cum_sum = torch.empty((size,), dtype=torch.int32, device=device)
|
|
self.indexes = torch.arange(0, size, dtype=torch.long, device=device)
|
|
|
|
def _init_kv_buffers(self, size, device, dtype, head_num, head_dim, layer_num):
|
|
""" Initialize key buffer and value buffer on specified device """
|
|
self.key_buffer = [
|
|
torch.empty((size, head_num, head_dim), dtype=dtype, device=device) for _ in range(layer_num)
|
|
]
|
|
self.value_buffer = [
|
|
torch.empty((size, head_num, head_dim), dtype=dtype, device=device) for _ in range(layer_num)
|
|
]
|
|
|
|
@torch.no_grad()
|
|
def alloc(self, required_size):
|
|
""" allocate space of required_size by providing indexes representing available physical spaces """
|
|
if required_size > self.available_size:
|
|
self.logger.warning(f"No enough cache: required_size {required_size} "
|
|
f"left_size {self.available_size}")
|
|
return None
|
|
torch.cumsum(self.mem_state, dim=0, dtype=torch.int32, out=self.mem_cum_sum)
|
|
select_index = torch.logical_and(self.mem_cum_sum <= required_size, self.mem_state == 1)
|
|
select_index = self.indexes[select_index]
|
|
self.mem_state[select_index] = 0
|
|
self.available_size -= len(select_index)
|
|
return select_index
|
|
|
|
@torch.no_grad()
|
|
def alloc_contiguous(self, required_size):
|
|
""" allocate contiguous space of required_size """
|
|
if required_size > self.available_size:
|
|
self.logger.warning(f"No enough cache: required_size {required_size} "
|
|
f"left_size {self.available_size}")
|
|
return None
|
|
torch.cumsum(self.mem_state, dim=0, dtype=torch.int32, out=self.mem_cum_sum)
|
|
sum_size = len(self.mem_cum_sum)
|
|
loc_sums = self.mem_cum_sum[required_size - 1:] - self.mem_cum_sum[0:sum_size - required_size +
|
|
1] + self.mem_state[0:sum_size -
|
|
required_size + 1]
|
|
can_used_loc = self.indexes[0:sum_size - required_size + 1][loc_sums == required_size]
|
|
if can_used_loc.shape[0] == 0:
|
|
self.logger.info(f"No enough contiguous cache: required_size {required_size} "
|
|
f"left_size {self.available_size}")
|
|
return None
|
|
start_loc = can_used_loc[0]
|
|
select_index = self.indexes[start_loc:start_loc + required_size]
|
|
self.mem_state[select_index] = 0
|
|
self.available_size -= len(select_index)
|
|
start = start_loc.item()
|
|
end = start + required_size
|
|
return select_index, start, end
|
|
|
|
@torch.no_grad()
|
|
def free(self, free_index):
|
|
""" free memory by updating memory states based on given indexes """
|
|
self.available_size += free_index.shape[0]
|
|
self.mem_state[free_index] = 1
|
|
|
|
@torch.no_grad()
|
|
def free_all(self):
|
|
""" free all memory by updating memory states """
|
|
self.available_size = len(self.mem_state)
|
|
self.mem_state[:] = 1
|
|
self.past_key_values_length = 0
|
|
self.logger.info("freed all space of memory manager")
|