mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-04-28 03:43:01 +00:00
* [infer] Infer/llama demo (#4503)
* add
* add infer example
* finish
* finish
* stash
* fix
* [Kernels] add inference token attention kernel (#4505)
* add token forward
* fix tests
* fix comments
* add try import triton
* add adapted license
* add tests check
* [Kernels] add necessary kernels (llama & bloom) for attention forward and kv-cache manager (#4485)
* added _vllm_rms_norm
* change place
* added tests
* added tests
* modify
* adding kernels
* added tests:
* adding kernels
* modify
* added
* updating kernels
* adding tests
* added tests
* kernel change
* submit
* modify
* added
* edit comments
* change name
* change commnets and fix import
* add
* added
* combine codes (#4509)
* [feature] add KV cache manager for llama & bloom inference (#4495)
* add kv cache memory manager
* add stateinfo during inference
* format
* format
* rename file
* add kv cache test
* revise on BatchInferState
* file dir change
* [Bug FIx] import llama context ops fix (#4524)
* added _vllm_rms_norm
* change place
* added tests
* added tests
* modify
* adding kernels
* added tests:
* adding kernels
* modify
* added
* updating kernels
* adding tests
* added tests
* kernel change
* submit
* modify
* added
* edit comments
* change name
* change commnets and fix import
* add
* added
* fix
* add ops into init.py
* add
* [Infer] Add TPInferEngine and fix file path (#4532)
* add engine for TP inference
* move file path
* update path
* fix TPInferEngine
* remove unused file
* add engine test demo
* revise TPInferEngine
* fix TPInferEngine, add test
* fix
* Add Inference test for llama (#4508)
* add kv cache memory manager
* add stateinfo during inference
* add
* add infer example
* finish
* finish
* format
* format
* rename file
* add kv cache test
* revise on BatchInferState
* add inference test for llama
* fix conflict
* feature: add some new features for llama engine
* adapt colossalai triton interface
* Change the parent class of llama policy
* add nvtx
* move llama inference code to tensor_parallel
* fix __init__.py
* rm tensor_parallel
* fix: fix bugs in auto_policy.py
* fix:rm some unused codes
* mv colossalai/tpinference to colossalai/inference/tensor_parallel
* change __init__.py
* save change
* fix engine
* Bug fix: Fix hang
* remove llama_infer_engine.py
---------
Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
* [infer] Add Bloom inference policy and replaced methods (#4512)
* add bloom inference methods and policy
* enable pass BatchInferState from model forward
* revise bloom infer layers/policies
* add engine for inference (draft)
* add test for bloom infer
* fix bloom infer policy and flow
* revise bloom test
* fix bloom file path
* remove unused codes
* fix bloom modeling
* fix dir typo
* fix trivial
* fix policy
* clean pr
* trivial fix
* Revert "[infer] Add Bloom inference policy and replaced methods (#4512)" (#4552)
This reverts commit 17cfa57140
.
* [Doc] Add colossal inference doc (#4549)
* create readme
* add readme.md
* fix typos
* [infer] Add Bloom inference policy and replaced methods (#4553)
* add bloom inference methods and policy
* enable pass BatchInferState from model forward
* revise bloom infer layers/policies
* add engine for inference (draft)
* add test for bloom infer
* fix bloom infer policy and flow
* revise bloom test
* fix bloom file path
* remove unused codes
* fix bloom modeling
* fix dir typo
* fix trivial
* fix policy
* clean pr
* trivial fix
* trivial
* Fix Bugs In Llama Model Forward (#4550)
* add kv cache memory manager
* add stateinfo during inference
* add
* add infer example
* finish
* finish
* format
* format
* rename file
* add kv cache test
* revise on BatchInferState
* add inference test for llama
* fix conflict
* feature: add some new features for llama engine
* adapt colossalai triton interface
* Change the parent class of llama policy
* add nvtx
* move llama inference code to tensor_parallel
* fix __init__.py
* rm tensor_parallel
* fix: fix bugs in auto_policy.py
* fix:rm some unused codes
* mv colossalai/tpinference to colossalai/inference/tensor_parallel
* change __init__.py
* save change
* fix engine
* Bug fix: Fix hang
* remove llama_infer_engine.py
* bug fix: fix bugs about infer_state.is_context_stage
* remove pollcies
* fix: delete unused code
* fix: delete unused code
* remove unused coda
* fix conflict
---------
Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
* [doc] add colossal inference fig (#4554)
* create readme
* add readme.md
* fix typos
* upload fig
* [NFC] fix docstring for colossal inference (#4555)
Fix docstring and comments in kv cache manager and bloom modeling
* fix docstring in llama modeling (#4557)
* [Infer] check import vllm (#4559)
* change import vllm
* import apply_rotary_pos_emb
* change import location
* [DOC] add installation req (#4561)
* add installation req
* fix
* slight change
* remove empty
* [Feature] rms-norm transfer into inference llama.py (#4563)
* add installation req
* fix
* slight change
* remove empty
* add rmsnorm polciy
* add
* clean codes
* [infer] Fix tp inference engine (#4564)
* fix engine prepare data
* add engine test
* use bloom for testing
* revise on test
* revise on test
* reset shardformer llama (#4569)
* [infer] Fix engine - tensors on different devices (#4570)
* fix diff device in engine
* [codefactor] Feature/colossal inference (#4579)
* code factors
* remove
* change coding (#4581)
* [doc] complete README of colossal inference (#4585)
* complete fig
* Update README.md
* [doc]update readme (#4586)
* update readme
* Update README.md
* bug fix: fix bus in llama and bloom (#4588)
* [BUG FIX]Fix test engine in CI and non-vllm kernels llama forward (#4592)
* fix tests
* clean
* clean
* fix bugs
* add
* fix llama non-vllm kernels bug
* modify
* clean codes
* [Kernel]Rmsnorm fix (#4598)
* fix tests
* clean
* clean
* fix bugs
* add
* fix llama non-vllm kernels bug
* modify
* clean codes
* add triton rmsnorm
* delete vllm kernel flag
* [Bug Fix]Fix bugs in llama (#4601)
* fix tests
* clean
* clean
* fix bugs
* add
* fix llama non-vllm kernels bug
* modify
* clean codes
* bug fix: remove rotary_positions_ids
---------
Co-authored-by: cuiqing.li <lixx3527@gmail.com>
* [kernel] Add triton layer norm & replace norm for bloom (#4609)
* add layernorm for inference
* add test for layernorm kernel
* add bloom layernorm replacement policy
* trivial: path
* [Infer] Bug fix rotary embedding in llama (#4608)
* fix rotary embedding
* delete print
* fix init seq len bug
* rename pytest
* add benchmark for llama
* refactor codes
* delete useless code
* [bench] Add bloom inference benchmark (#4621)
* add bloom benchmark
* readme - update benchmark res
* trivial - uncomment for testing (#4622)
* [Infer] add check triton and cuda version for tests (#4627)
* fix rotary embedding
* delete print
* fix init seq len bug
* rename pytest
* add benchmark for llama
* refactor codes
* delete useless code
* add check triton and cuda
* Update sharder.py (#4629)
* [Inference] Hot fix some bugs and typos (#4632)
* fix
* fix test
* fix conflicts
* [typo]Comments fix (#4633)
* fallback
* fix commnets
* bug fix: fix some bugs in test_llama and test_bloom (#4635)
* [Infer] delete benchmark in tests and fix bug for llama and bloom (#4636)
* fix rotary embedding
* delete print
* fix init seq len bug
* rename pytest
* add benchmark for llama
* refactor codes
* delete useless code
* add check triton and cuda
* delete benchmark and fix infer bugs
* delete benchmark for tests
* delete useless code
* delete bechmark function in utils
* [Fix] Revise TPInferEngine, inference tests and benchmarks (#4642)
* [Fix] revise TPInferEngine methods and inference tests
* fix llama/bloom infer benchmarks
* fix infer tests
* trivial fix: benchmakrs
* trivial
* trivial: rm print
* modify utils filename for infer ops test (#4657)
* [Infer] Fix TPInferEngine init & inference tests, benchmarks (#4670)
* fix engine funcs
* TPInferEngine: receive shard config in init
* benchmarks: revise TPInferEngine init
* benchmarks: remove pytest decorator
* trivial fix
* use small model for tests
* [NFC] use args for infer benchmarks (#4674)
* revise infer default (#4683)
* [Fix] optimize/shard model in TPInferEngine init (#4684)
* remove using orig model in engine
* revise inference tests
* trivial: rename
---------
Co-authored-by: Jianghai <72591262+CjhHa1@users.noreply.github.com>
Co-authored-by: Xu Kai <xukai16@foxmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
96 lines
3.8 KiB
Python
96 lines
3.8 KiB
Python
import torch
|
|
try:
|
|
import triton
|
|
import triton.language as tl
|
|
HAS_TRITON = True
|
|
except ImportError:
|
|
HAS_TRITON = False
|
|
print("please install triton from https://github.com/openai/triton")
|
|
|
|
if HAS_TRITON:
|
|
'''
|
|
softmax kernel is modified based on
|
|
https://github.com/openai/triton/blob/34817ecc954a6f4ca7b4dfb352fdde1f8bd49ca5/python/tutorials/02-fused-softmax.py
|
|
'''
|
|
@triton.jit
|
|
def softmax_kernel(output_ptr, input_ptr, row_stride, n_cols, mask_ptr, BLOCK_SIZE: tl.constexpr):
|
|
r""" the kernel function for implementing softmax operator
|
|
Args:
|
|
output_ptr: the output after finishing softmax operation, (N, hidden_dim)
|
|
input_ptr: the tensor of input, shape should be (N, hidden_dim)
|
|
n_cols(tl.constexpr): the number of cols of input
|
|
BLOCK_SIZE(tl.constexpr): the block_size of your hidden_dim dimension, typically BLOCK_SIZE >= hidden_dim
|
|
"""
|
|
row_idx = tl.program_id(0)
|
|
row_start_ptr = input_ptr + row_idx * row_stride
|
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
input_ptrs = row_start_ptr + col_offsets
|
|
row = tl.load(input_ptrs, mask=col_offsets < n_cols, other=-float('inf')).to(tl.float32)
|
|
row_minus_max = row - tl.max(row, axis=0)
|
|
|
|
if mask_ptr is not None:
|
|
# load mask into SRAM
|
|
mask_ptrs = (mask_ptr + (row_indx * row_stride)) + col_offsets
|
|
mask = tl.load(mask_ptrs, mask=col_offsets < n_cols, other=0).to(tl.float32)
|
|
|
|
# update
|
|
row_minus_max = row_minus_max + mask
|
|
|
|
numerator = tl.exp(row_minus_max)
|
|
denominator = tl.sum(numerator, axis=0)
|
|
softmax_output = numerator / denominator
|
|
output_row_start_ptr = output_ptr + row_idx * row_stride
|
|
output_ptrs = output_row_start_ptr + col_offsets
|
|
# Write back output to DRAM
|
|
tl.store(output_ptrs, softmax_output, mask=col_offsets < n_cols)
|
|
|
|
|
|
def softmax(input: torch.Tensor, mask: torch.Tensor = None, dim=-1) -> torch.Tensor:
|
|
if mask is not None:
|
|
assert input[-1] == mask[-1], "the last dimentions should be the same for input and mask"
|
|
assert dim == -1 or dim == len(input.shape)-1, "currently softmax layer only support last dimention"
|
|
|
|
hidden_dim = input.shape[-1]
|
|
output = torch.empty_like(input)
|
|
input = input.view(-1, hidden_dim)
|
|
if mask is not None:
|
|
mask = mask.view(-1, hidden_dim)
|
|
assert input.shape[0] == mask.shape[0], "the fist dimention of mask and input should be the same"
|
|
|
|
num_rows, num_cols = input.shape
|
|
block_size = max(triton.next_power_of_2(num_cols), 2)
|
|
num_warps = 16
|
|
if block_size >= 4096:
|
|
num_warps = 16
|
|
elif block_size >= 2048:
|
|
num_warps = 8
|
|
else:
|
|
num_warps = 4
|
|
|
|
if num_rows <= 350000:
|
|
grid = (num_rows,)
|
|
softmax_kernel[grid](output, input, input.stride(0), num_cols, mask, BLOCK_SIZE = block_size, num_warps=num_warps)
|
|
else:
|
|
grid = lambda meta: ()
|
|
|
|
grid = lambda meta: (
|
|
triton.cdiv(num_rows, meta["BLOCK_M"]),
|
|
)
|
|
|
|
BLOCK_M = 32
|
|
if block_size >= 4096:
|
|
BLOCK_M = 4
|
|
elif block_size >= 2048:
|
|
BLOCK_M = 8
|
|
|
|
softmax_kernel[grid](output_ptr = output,
|
|
input_ptr = input,
|
|
row_stride = input.stride(0),
|
|
n_rows = num_rows,
|
|
n_cols = num_cols,
|
|
mask_ptr = mask,
|
|
# currently manually setting up size
|
|
BLOCK_M = 32,
|
|
BLOCK_SIZE = block_size)
|
|
|
|
return output |