mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-04-27 19:36:13 +00:00
* [infer] Infer/llama demo (#4503)
* add
* add infer example
* finish
* finish
* stash
* fix
* [Kernels] add inference token attention kernel (#4505)
* add token forward
* fix tests
* fix comments
* add try import triton
* add adapted license
* add tests check
* [Kernels] add necessary kernels (llama & bloom) for attention forward and kv-cache manager (#4485)
* added _vllm_rms_norm
* change place
* added tests
* added tests
* modify
* adding kernels
* added tests:
* adding kernels
* modify
* added
* updating kernels
* adding tests
* added tests
* kernel change
* submit
* modify
* added
* edit comments
* change name
* change commnets and fix import
* add
* added
* combine codes (#4509)
* [feature] add KV cache manager for llama & bloom inference (#4495)
* add kv cache memory manager
* add stateinfo during inference
* format
* format
* rename file
* add kv cache test
* revise on BatchInferState
* file dir change
* [Bug FIx] import llama context ops fix (#4524)
* added _vllm_rms_norm
* change place
* added tests
* added tests
* modify
* adding kernels
* added tests:
* adding kernels
* modify
* added
* updating kernels
* adding tests
* added tests
* kernel change
* submit
* modify
* added
* edit comments
* change name
* change commnets and fix import
* add
* added
* fix
* add ops into init.py
* add
* [Infer] Add TPInferEngine and fix file path (#4532)
* add engine for TP inference
* move file path
* update path
* fix TPInferEngine
* remove unused file
* add engine test demo
* revise TPInferEngine
* fix TPInferEngine, add test
* fix
* Add Inference test for llama (#4508)
* add kv cache memory manager
* add stateinfo during inference
* add
* add infer example
* finish
* finish
* format
* format
* rename file
* add kv cache test
* revise on BatchInferState
* add inference test for llama
* fix conflict
* feature: add some new features for llama engine
* adapt colossalai triton interface
* Change the parent class of llama policy
* add nvtx
* move llama inference code to tensor_parallel
* fix __init__.py
* rm tensor_parallel
* fix: fix bugs in auto_policy.py
* fix:rm some unused codes
* mv colossalai/tpinference to colossalai/inference/tensor_parallel
* change __init__.py
* save change
* fix engine
* Bug fix: Fix hang
* remove llama_infer_engine.py
---------
Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
* [infer] Add Bloom inference policy and replaced methods (#4512)
* add bloom inference methods and policy
* enable pass BatchInferState from model forward
* revise bloom infer layers/policies
* add engine for inference (draft)
* add test for bloom infer
* fix bloom infer policy and flow
* revise bloom test
* fix bloom file path
* remove unused codes
* fix bloom modeling
* fix dir typo
* fix trivial
* fix policy
* clean pr
* trivial fix
* Revert "[infer] Add Bloom inference policy and replaced methods (#4512)" (#4552)
This reverts commit 17cfa57140
.
* [Doc] Add colossal inference doc (#4549)
* create readme
* add readme.md
* fix typos
* [infer] Add Bloom inference policy and replaced methods (#4553)
* add bloom inference methods and policy
* enable pass BatchInferState from model forward
* revise bloom infer layers/policies
* add engine for inference (draft)
* add test for bloom infer
* fix bloom infer policy and flow
* revise bloom test
* fix bloom file path
* remove unused codes
* fix bloom modeling
* fix dir typo
* fix trivial
* fix policy
* clean pr
* trivial fix
* trivial
* Fix Bugs In Llama Model Forward (#4550)
* add kv cache memory manager
* add stateinfo during inference
* add
* add infer example
* finish
* finish
* format
* format
* rename file
* add kv cache test
* revise on BatchInferState
* add inference test for llama
* fix conflict
* feature: add some new features for llama engine
* adapt colossalai triton interface
* Change the parent class of llama policy
* add nvtx
* move llama inference code to tensor_parallel
* fix __init__.py
* rm tensor_parallel
* fix: fix bugs in auto_policy.py
* fix:rm some unused codes
* mv colossalai/tpinference to colossalai/inference/tensor_parallel
* change __init__.py
* save change
* fix engine
* Bug fix: Fix hang
* remove llama_infer_engine.py
* bug fix: fix bugs about infer_state.is_context_stage
* remove pollcies
* fix: delete unused code
* fix: delete unused code
* remove unused coda
* fix conflict
---------
Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
* [doc] add colossal inference fig (#4554)
* create readme
* add readme.md
* fix typos
* upload fig
* [NFC] fix docstring for colossal inference (#4555)
Fix docstring and comments in kv cache manager and bloom modeling
* fix docstring in llama modeling (#4557)
* [Infer] check import vllm (#4559)
* change import vllm
* import apply_rotary_pos_emb
* change import location
* [DOC] add installation req (#4561)
* add installation req
* fix
* slight change
* remove empty
* [Feature] rms-norm transfer into inference llama.py (#4563)
* add installation req
* fix
* slight change
* remove empty
* add rmsnorm polciy
* add
* clean codes
* [infer] Fix tp inference engine (#4564)
* fix engine prepare data
* add engine test
* use bloom for testing
* revise on test
* revise on test
* reset shardformer llama (#4569)
* [infer] Fix engine - tensors on different devices (#4570)
* fix diff device in engine
* [codefactor] Feature/colossal inference (#4579)
* code factors
* remove
* change coding (#4581)
* [doc] complete README of colossal inference (#4585)
* complete fig
* Update README.md
* [doc]update readme (#4586)
* update readme
* Update README.md
* bug fix: fix bus in llama and bloom (#4588)
* [BUG FIX]Fix test engine in CI and non-vllm kernels llama forward (#4592)
* fix tests
* clean
* clean
* fix bugs
* add
* fix llama non-vllm kernels bug
* modify
* clean codes
* [Kernel]Rmsnorm fix (#4598)
* fix tests
* clean
* clean
* fix bugs
* add
* fix llama non-vllm kernels bug
* modify
* clean codes
* add triton rmsnorm
* delete vllm kernel flag
* [Bug Fix]Fix bugs in llama (#4601)
* fix tests
* clean
* clean
* fix bugs
* add
* fix llama non-vllm kernels bug
* modify
* clean codes
* bug fix: remove rotary_positions_ids
---------
Co-authored-by: cuiqing.li <lixx3527@gmail.com>
* [kernel] Add triton layer norm & replace norm for bloom (#4609)
* add layernorm for inference
* add test for layernorm kernel
* add bloom layernorm replacement policy
* trivial: path
* [Infer] Bug fix rotary embedding in llama (#4608)
* fix rotary embedding
* delete print
* fix init seq len bug
* rename pytest
* add benchmark for llama
* refactor codes
* delete useless code
* [bench] Add bloom inference benchmark (#4621)
* add bloom benchmark
* readme - update benchmark res
* trivial - uncomment for testing (#4622)
* [Infer] add check triton and cuda version for tests (#4627)
* fix rotary embedding
* delete print
* fix init seq len bug
* rename pytest
* add benchmark for llama
* refactor codes
* delete useless code
* add check triton and cuda
* Update sharder.py (#4629)
* [Inference] Hot fix some bugs and typos (#4632)
* fix
* fix test
* fix conflicts
* [typo]Comments fix (#4633)
* fallback
* fix commnets
* bug fix: fix some bugs in test_llama and test_bloom (#4635)
* [Infer] delete benchmark in tests and fix bug for llama and bloom (#4636)
* fix rotary embedding
* delete print
* fix init seq len bug
* rename pytest
* add benchmark for llama
* refactor codes
* delete useless code
* add check triton and cuda
* delete benchmark and fix infer bugs
* delete benchmark for tests
* delete useless code
* delete bechmark function in utils
* [Fix] Revise TPInferEngine, inference tests and benchmarks (#4642)
* [Fix] revise TPInferEngine methods and inference tests
* fix llama/bloom infer benchmarks
* fix infer tests
* trivial fix: benchmakrs
* trivial
* trivial: rm print
* modify utils filename for infer ops test (#4657)
* [Infer] Fix TPInferEngine init & inference tests, benchmarks (#4670)
* fix engine funcs
* TPInferEngine: receive shard config in init
* benchmarks: revise TPInferEngine init
* benchmarks: remove pytest decorator
* trivial fix
* use small model for tests
* [NFC] use args for infer benchmarks (#4674)
* revise infer default (#4683)
* [Fix] optimize/shard model in TPInferEngine init (#4684)
* remove using orig model in engine
* revise inference tests
* trivial: rename
---------
Co-authored-by: Jianghai <72591262+CjhHa1@users.noreply.github.com>
Co-authored-by: Xu Kai <xukai16@foxmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
101 lines
3.8 KiB
Python
101 lines
3.8 KiB
Python
import argparse
|
|
import os
|
|
import time
|
|
|
|
import torch
|
|
from transformers import BloomForCausalLM, BloomTokenizerFast
|
|
|
|
import colossalai
|
|
from colossalai.inference.tensor_parallel.engine import TPInferEngine
|
|
from colossalai.logging import disable_existing_loggers
|
|
from colossalai.shardformer import ShardConfig
|
|
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
|
|
|
|
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
|
|
|
|
|
|
def print_perf_stats(latency_set, config, bs, warmup=3):
|
|
# trim warmup queries
|
|
latency_set = list(latency_set)
|
|
latency_set = latency_set[warmup:]
|
|
count = len(latency_set)
|
|
|
|
if count > 0:
|
|
latency_set.sort()
|
|
avg = sum(latency_set) / count
|
|
num_layers = getattr(config, "num_layers", config.num_hidden_layers)
|
|
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12
|
|
num_bytes = 2 # float16
|
|
|
|
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000))
|
|
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9))
|
|
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12))
|
|
print("Avg Throughput: tokens/s: {}".format((1000 / (avg * 1000)) * bs))
|
|
|
|
|
|
def bench_bloom(args):
|
|
model_path = args.path
|
|
max_batch_size = args.batch_size
|
|
max_input_len = args.input_len
|
|
max_output_len = args.output_len
|
|
|
|
tokenizer = BloomTokenizerFast.from_pretrained(model_path)
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
model = BloomForCausalLM.from_pretrained(model_path, pad_token_id=tokenizer.eos_token_id)
|
|
model = model.half()
|
|
|
|
# init TPInferEngine and shard the original model
|
|
# To benchmark torch original, comment out the line of optimizing model
|
|
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True)
|
|
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
|
|
|
|
# prepare data for generation
|
|
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
|
|
input_tokens = {
|
|
"input_ids": torch.randint(10, 1000, (max_batch_size, max_input_len)),
|
|
"attention_mask": torch.ones((max_batch_size, max_input_len))
|
|
}
|
|
for t in input_tokens:
|
|
if torch.is_tensor(input_tokens[t]):
|
|
input_tokens[t] = input_tokens[t].to(torch.cuda.current_device())
|
|
print(f" input_tokens[{t}].shape: {input_tokens[t].shape}")
|
|
|
|
iters = 10
|
|
times = []
|
|
for i in range(iters):
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
|
|
torch.cuda.synchronize()
|
|
end = time.time()
|
|
out_len = outputs.shape[1]
|
|
print(f" iter {i}: out len {str(out_len)}, generation time {str(end - start)} s")
|
|
times.append((end - start) / (out_len - max_input_len))
|
|
|
|
print_perf_stats(times, model.config, max_batch_size)
|
|
|
|
|
|
def check_bloom(rank, world_size, port, args):
|
|
disable_existing_loggers()
|
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
bench_bloom(args)
|
|
|
|
|
|
@rerun_if_address_is_in_use()
|
|
@clear_cache_before_run()
|
|
def test_bloom(args):
|
|
spawn(check_bloom, args.tp_size, args=args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-p', '--path', type=str, help='Model path', required=True)
|
|
parser.add_argument('-tp', '--tp_size', type=int, default=1, help='Tensor parallel size')
|
|
parser.add_argument('-b', '--batch_size', type=int, default=16, help='Maximum batch size')
|
|
parser.add_argument('--input_len', type=int, default=1024, help='Maximum input length')
|
|
parser.add_argument('--output_len', type=int, default=128, help='Maximum output length')
|
|
|
|
args = parser.parse_args()
|
|
|
|
test_bloom(args)
|