Files
ColossalAI/applications/ChatGPT/examples/train_prompts.py
BlueRum 34ca324b0d [chatgpt] Support saving ckpt in examples (#2846)
* [chatgpt]fix train_rm bug with lora

* [chatgpt]support colossalai strategy to train rm

* fix pre-commit

* fix pre-commit 2

* [chatgpt]fix rm eval typo

* fix rm eval

* fix pre commit

* add support of saving ckpt in examples

* fix single-gpu save
2023-02-22 10:00:26 +08:00

123 lines
4.8 KiB
Python

import argparse
from copy import deepcopy
import pandas as pd
import torch
from chatgpt.nn import BLOOMActor, BLOOMCritic, GPTActor, GPTCritic, OPTActor, OPTCritic, RewardModel
from chatgpt.trainer import PPOTrainer
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
from torch.optim import Adam
from transformers import AutoTokenizer, BloomTokenizerFast
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from colossalai.nn.optimizer import HybridAdam
def main(args):
# configure strategy
if args.strategy == 'naive':
strategy = NaiveStrategy()
elif args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
with strategy.model_init_context():
if args.model == 'gpt2':
actor = GPTActor().cuda()
critic = GPTCritic().cuda()
elif args.model == 'bloom':
actor = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank).cuda()
critic = BLOOMCritic(pretrained=args.pretrain, lora_rank=args.lora_rank).cuda()
elif args.model == 'opt':
actor = OPTActor(lora_rank=args.lora_rank).cuda()
critic = OPTCritic(lora_rank=args.lora_rank).cuda()
else:
raise ValueError(f'Unsupported model "{args.model}"')
initial_model = deepcopy(actor)
reward_model = RewardModel(deepcopy(critic.model), deepcopy(critic.value_head)).cuda()
# configure optimizer
if args.strategy.startswith('colossalai'):
actor_optim = HybridAdam(actor.parameters(), lr=5e-6)
critic_optim = HybridAdam(critic.parameters(), lr=5e-6)
else:
actor_optim = Adam(actor.parameters(), lr=5e-6)
critic_optim = Adam(critic.parameters(), lr=5e-6)
# configure tokenizer
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'bloom':
tokenizer = BloomTokenizerFast.from_pretrained(args.pretrain)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
else:
raise ValueError(f'Unsupported model "{args.model}"')
dataset = pd.read_csv(args.prompt_path)['prompt']
def tokenize_fn(texts):
batch = tokenizer(texts, return_tensors='pt', max_length=96, padding=True, truncation=True)
return {k: v.cuda() for k, v in batch.items()}
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare(
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model)
# configure trainer
trainer = PPOTrainer(
strategy,
actor,
critic,
reward_model,
initial_model,
actor_optim,
critic_optim,
max_epochs=args.max_epochs,
train_batch_size=args.train_batch_size,
tokenizer=tokenize_fn,
max_length=128,
do_sample=True,
temperature=1.0,
top_k=50,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
trainer.fit(dataset,
num_episodes=args.num_episodes,
max_timesteps=args.max_timesteps,
update_timesteps=args.update_timesteps)
# save model checkpoint after fitting on only rank0
strategy.save_model(actor, 'actor_checkpoint_prompts.pt', only_rank0=True)
# save optimizer checkpoint on all ranks
strategy.save_optimizer(actor_optim,
'actor_optim_checkpoint_prompts_%d.pt' % (torch.cuda.current_device()),
only_rank0=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('prompt_path')
parser.add_argument('--strategy',
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='naive')
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt'])
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--num_episodes', type=int, default=10)
parser.add_argument('--max_timesteps', type=int, default=10)
parser.add_argument('--update_timesteps', type=int, default=10)
parser.add_argument('--max_epochs', type=int, default=5)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
args = parser.parse_args()
main(args)