mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-05-29 10:24:46 +00:00
* fp8 operators for compressed communication cast_to_fp8, cast_from_fp8, all_reduce_fp8 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix typo * fix scaling algorithm in FP8 casting * support fp8 communication in pipeline parallelism * add fp8_communication flag in the script * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * shardformer fp8 * fix rebase * remove all to all * fix shardformer fp8 communication training degradation * [fp8] support all-gather flat tensor (#5932) * [fp8] add fp8 comm for low level zero * [test] add zero fp8 test case * [Feature] llama shardformer fp8 support (#5938) * add llama shardformer fp8 * Llama Shardformer Parity * fix typo * fix all reduce * fix pytest failure * fix reduce op and move function to fp8.py * fix typo * [FP8] rebase main (#5963) * add SimPO * fix dataloader * remove debug code * add orpo * fix style * fix colossalai, transformers version * fix colossalai, transformers version * fix colossalai, transformers version * fix torch colossalai version * update transformers version * [shardformer] DeepseekMoE support (#5871) * [Feature] deepseek moe expert parallel implement * [misc] fix typo, remove redundant file (#5867) * [misc] fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] deepseek support & unit test * [misc] remove debug code & useless print * [misc] fix typos (#5872) * [Feature] remove modeling file, use auto config. (#5884) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [Deepseek] remove redundant code (#5888) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [Feature/deepseek] resolve comment. (#5889) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [misc] mv module replacement into if branch * [misc] add some warning message and modify some code in unit test * [misc] fix typos --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838) * Diffusion Model Inference support * Stable Diffusion 3 Support * pixartalpha support * [HotFix] CI,import,requirements-test for #5838 (#5892) * [Hot Fix] CI,import,requirements-test --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Enable PP + SP for llama (#5868) * fix cross-PP-stage position id length diff bug * fix typo * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * use a one cross entropy func for all shardformer models --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897) * add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint * fix style * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix eval * hotfix citation * [zero] support all-gather overlap (#5898) * [zero] support all-gather overlap * [zero] add overlap all-gather flag * [misc] fix typo * [zero] update api * fix orpo cross entropy loss * [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446) * Remove unnecessary calls to deepcopy * Build DimSpec's difference dict only once This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough. * Fix documentation of DimSpec's difference method * [ShardFormer] fix qwen2 sp (#5903) * [compatibility] support torch 2.2 (#5875) * Support Pytorch 2.2.2 * keep build_on_pr file and update .compatibility * fix object_to_tensor usage when torch>=2.3.0 (#5820) * [misc] support torch2.3 (#5893) * [misc] support torch2.3 * [devops] update compatibility ci * [devops] update compatibility ci * [devops] add debug * [devops] add debug * [devops] add debug * [devops] add debug * [devops] remove debug * [devops] remove debug * [release] update version (#5912) * [plugin] support all-gather overlap for hybrid parallel (#5919) * [plugin] fixed all-gather overlap support for hybrid parallel * add kto * fix style, add kto data sample * [Examples] Add lazy init to OPT and GPT examples (#5924) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [ColossalChat] Hotfix for ColossalChat (#5910) * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * fix ddp issue * add Qwen 1.5 32B * refactor tokenization * [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931) * cannot access local variable 'default_conversation' where it is not associated with a value set default value for 'default_conversation' * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix test data * refactor evaluation * remove real data path * remove real data path * Add n_fused as an input from native_module (#5894) * [FIX BUG] convert env param to int in (#5934) * [Hotfix] Fix ZeRO typo #5936 Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941) * Add a switch to control whether the model checkpoint needs to be saved after each epoch ends * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix style * fix style * fix style * [shardformer] hotfix attn mask (#5945) * [shardformer] hotfix attn mask (#5947) * [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895) * Distrifusion Support source * comp comm overlap optimization * sd3 benchmark * pixart distrifusion bug fix * sd3 bug fix and benchmark * generation bug fix * naming fix * add docstring, fix counter and shape error * add reference * readme and requirement * [zero] hotfix update master params (#5951) * [release] update version (#5952) * [Chat] Fix lora (#5946) * fix merging * remove filepath * fix style * Update README.md (#5958) * [hotfix] Remove unused plan section (#5957) * remove readme * fix readme * update * [test] add mixtral for sequence classification * [test] add mixtral transformer test * [moe] fix plugin * [test] mixtra pp shard test * [chore] handle non member group * [zero] solve hang * [test] pass mixtral shardformer test * [moe] implement transit between non moe tp and ep * [zero] solve hang * [misc] solve booster hang by rename the variable * solve hang when parallel mode = pp + dp * [moe] implement submesh initialization * [moe] add mixtral dp grad scaling when not all experts are activated * [chore] manually revert unintended commit * [chore] trivial fix * [chore] arg pass & remove drop token * [test] add mixtral modelling test * [moe] implement tp * [moe] test deepseek * [moe] clean legacy code * [Feature] MoE Ulysses Support (#5918) * moe sp support * moe sp bug solve * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [chore] minor fix * [moe] init moe plugin comm setting with sp * moe sp + ep bug fix * [moe] finalize test (no pp) * [moe] full test for deepseek and mixtral (pp + sp to fix) * [chore] minor fix after rebase * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [chore] solve moe ckpt test failure and some other arg pass failure * [moe] remove ops * [test] fix test: test_zero1_2 * [bug] fix: somehow logger hangs the program * [moe] deepseek moe sp support * [test] add check * [deepseek] replace attn (a workaround for bug in transformers) * [misc] skip redunant test * [misc] remove debug/print code * [moe] refactor mesh assignment * Revert "[moe] implement submesh initialization" This reverts commit2f9bce6686
. * [chore] change moe_pg_mesh to private * [misc] remove incompatible test config * [misc] fix ci failure: change default value to false in moe plugin * [misc] remove useless condition * [chore] docstring * [moe] remove force_overlap_comm flag and add warning instead * [doc] add MoeHybridParallelPlugin docstring * [moe] solve dp axis issue * [chore] remove redundant test case, print string & reduce test tokens * [feat] Dist Loader for Eval (#5950) * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix tp error * remove unused parameters * remove unused * update inference * update docs * update inference --------- Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [lora] lora support hybrid parallel plugin (#5956) * lora support hybrid plugin * fix * fix * fix * fix * fp8 operators for compressed communication cast_to_fp8, cast_from_fp8, all_reduce_fp8 * fix scaling algorithm in FP8 casting * support fp8 communication in pipeline parallelism * add fp8_communication flag in the script * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * shardformer fp8 * fix rebase * remove all to all * fix shardformer fp8 communication training degradation * [fp8] support all-gather flat tensor (#5932) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Update low_level_optim.py --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Haze188 <haze188@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: zhurunhua <1281592874@qq.com> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: Gao, Ruiyuan <905370712@qq.com> Co-authored-by: hxwang <wang1570@e.ntu.edu.sg> Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com> Co-authored-by: HangXu <hangxu0304@gmail.com> * [fp8]support all2all fp8 (#5953) * support all2all fp8 * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [fp8] add fp8 linear (#5967) * [fp8] add fp8 linear * [test] fix fp8 linear test condition * [test] fix fp8 linear test condition * [test] fix fp8 linear test condition * [fp8] support fp8 amp for hybrid parallel plugin (#5975) * [fp8] support fp8 amp for hybrid parallel plugin * [test] add fp8 hook test * [fp8] fix fp8 linear compatibility * fix (#5976) * [Feature]: support FP8 communication in DDP, FSDP, Gemini (#5928) * support fp8_communication in the Torch DDP grad comm, FSDP grad comm, and FSDP params comm * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * implement communication hook for FSDP params all-gather * added unit test for fp8 operators * support fp8 communication in GeminiPlugin * update training scripts to support fsdp and fp8 communication * fixed some minor bugs observed in unit test * add all_gather_into_tensor_flat_fp8 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add skip the test if torch < 2.2.0 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add skip the test if torch < 2.2.0 * add skip the test if torch < 2.2.0 * add fp8_comm flag * rebase latest fp8 operators * rebase latest fp8 operators * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [test ci]Feature/fp8 comm (#5981) * fix * fix * fix * [fp8] support gemini plugin (#5978) * [fp8] refactor hook * [fp8] support gemini plugin * [example] add fp8 option for llama benchmark * [fp8] use torch compile (torch >= 2.3.0) (#5979) * [fp8] use torch compile (torch >= 2.4.0) * [fp8] set use_fast_accum in linear * [chore] formal version check * [chore] fix sig * [fp8]Moe support fp8 communication (#5977) * fix * support moe fp8 * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix fix fi * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [fp8] support hybrid parallel plugin (#5982) * support fp8 comm for qwen2 model * support fp8 comm for qwen2 model * support fp8 comm for qwen2 model * fp8 * fix * bert and bloom * chatglm and command * gpt2,gptj,bert, falcon,blip2 * mistral,opy,sam,t5,vit,whisper * fix * fix * fix * [fp8] refactor fp8 linear with compile (#5993) * [fp8] refactor fp8 linear with compile * [fp8] fix linear test * [fp8] fix linear test * [fp8] support asynchronous FP8 communication (#5997) * fix * fix * fix * support async all2all * support async op for all gather * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [fp8] update torch.compile for linear_fp8 to >= 2.4.0 (#6004) * [fp8] linear perf enhancement * [fp8]update reduce-scatter test (#6002) * fix * fix * fix * fix * [fp8] add use_fp8 option for MoeHybridParallelPlugin (#6009) * [fp8] zero support fp8 linear. (#6006) * fix * fix * fix * zero fp8 * zero fp8 * Update requirements.txt * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix the merge * fix the merge * fix the merge * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix the merge * fix * fix * fix the merge * fix * fix * fix * fix * fix * fix the merge * fix * fix * fix * fix * [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016) * add SimPO * fix dataloader * remove debug code * add orpo * fix style * fix colossalai, transformers version * fix colossalai, transformers version * fix colossalai, transformers version * fix torch colossalai version * update transformers version * [shardformer] DeepseekMoE support (#5871) * [Feature] deepseek moe expert parallel implement * [misc] fix typo, remove redundant file (#5867) * [misc] fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] deepseek support & unit test * [misc] remove debug code & useless print * [misc] fix typos (#5872) * [Feature] remove modeling file, use auto config. (#5884) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [Deepseek] remove redundant code (#5888) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [Feature/deepseek] resolve comment. (#5889) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [misc] mv module replacement into if branch * [misc] add some warning message and modify some code in unit test * [misc] fix typos --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838) * Diffusion Model Inference support * Stable Diffusion 3 Support * pixartalpha support * [HotFix] CI,import,requirements-test for #5838 (#5892) * [Hot Fix] CI,import,requirements-test --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Enable PP + SP for llama (#5868) * fix cross-PP-stage position id length diff bug * fix typo * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * use a one cross entropy func for all shardformer models --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897) * add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint * fix style * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix eval * hotfix citation * [zero] support all-gather overlap (#5898) * [zero] support all-gather overlap * [zero] add overlap all-gather flag * [misc] fix typo * [zero] update api * fix orpo cross entropy loss * [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446) * Remove unnecessary calls to deepcopy * Build DimSpec's difference dict only once This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough. * Fix documentation of DimSpec's difference method * [ShardFormer] fix qwen2 sp (#5903) * [compatibility] support torch 2.2 (#5875) * Support Pytorch 2.2.2 * keep build_on_pr file and update .compatibility * fix object_to_tensor usage when torch>=2.3.0 (#5820) * [misc] support torch2.3 (#5893) * [misc] support torch2.3 * [devops] update compatibility ci * [devops] update compatibility ci * [devops] add debug * [devops] add debug * [devops] add debug * [devops] add debug * [devops] remove debug * [devops] remove debug * [release] update version (#5912) * [plugin] support all-gather overlap for hybrid parallel (#5919) * [plugin] fixed all-gather overlap support for hybrid parallel * add kto * fix style, add kto data sample * [Examples] Add lazy init to OPT and GPT examples (#5924) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [ColossalChat] Hotfix for ColossalChat (#5910) * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * fix ddp issue * add Qwen 1.5 32B * refactor tokenization * [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931) * cannot access local variable 'default_conversation' where it is not associated with a value set default value for 'default_conversation' * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix test data * refactor evaluation * remove real data path * remove real data path * Add n_fused as an input from native_module (#5894) * [FIX BUG] convert env param to int in (#5934) * [Hotfix] Fix ZeRO typo #5936 Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941) * Add a switch to control whether the model checkpoint needs to be saved after each epoch ends * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix style * fix style * fix style * [shardformer] hotfix attn mask (#5945) * [shardformer] hotfix attn mask (#5947) * [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895) * Distrifusion Support source * comp comm overlap optimization * sd3 benchmark * pixart distrifusion bug fix * sd3 bug fix and benchmark * generation bug fix * naming fix * add docstring, fix counter and shape error * add reference * readme and requirement * [zero] hotfix update master params (#5951) * [release] update version (#5952) * [Chat] Fix lora (#5946) * fix merging * remove filepath * fix style * Update README.md (#5958) * [hotfix] Remove unused plan section (#5957) * remove readme * fix readme * update * [test] add mixtral for sequence classification * [test] add mixtral transformer test * [moe] fix plugin * [test] mixtra pp shard test * [chore] handle non member group * [zero] solve hang * [test] pass mixtral shardformer test * [moe] implement transit between non moe tp and ep * [zero] solve hang * [misc] solve booster hang by rename the variable * solve hang when parallel mode = pp + dp * [moe] implement submesh initialization * [moe] add mixtral dp grad scaling when not all experts are activated * [chore] manually revert unintended commit * [chore] trivial fix * [chore] arg pass & remove drop token * [test] add mixtral modelling test * [moe] implement tp * [moe] test deepseek * [moe] clean legacy code * [Feature] MoE Ulysses Support (#5918) * moe sp support * moe sp bug solve * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [chore] minor fix * [moe] init moe plugin comm setting with sp * moe sp + ep bug fix * [moe] finalize test (no pp) * [moe] full test for deepseek and mixtral (pp + sp to fix) * [chore] minor fix after rebase * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [chore] solve moe ckpt test failure and some other arg pass failure * [moe] remove ops * [test] fix test: test_zero1_2 * [bug] fix: somehow logger hangs the program * [moe] deepseek moe sp support * [test] add check * [deepseek] replace attn (a workaround for bug in transformers) * [misc] skip redunant test * [misc] remove debug/print code * [moe] refactor mesh assignment * Revert "[moe] implement submesh initialization" This reverts commit2f9bce6686
. * [chore] change moe_pg_mesh to private * [misc] remove incompatible test config * [misc] fix ci failure: change default value to false in moe plugin * [misc] remove useless condition * [chore] docstring * [moe] remove force_overlap_comm flag and add warning instead * [doc] add MoeHybridParallelPlugin docstring * [moe] solve dp axis issue * [chore] remove redundant test case, print string & reduce test tokens * [feat] Dist Loader for Eval (#5950) * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix tp error * remove unused parameters * remove unused * update inference * update docs * update inference --------- Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [lora] lora support hybrid parallel plugin (#5956) * lora support hybrid plugin * fix * fix * fix * fix * Support overall loss, update KTO logging * [Docs] clarify launch port Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Hotfix] README link (#5966) * update ignore * update readme * run style * update readme * [Hotfix] Avoid fused RMSnorm import error without apex (#5985) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Chat] fix readme (#5989) * fix readme * fix readme, tokenization fully tested * fix readme, tokenization fully tested * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix sync condition (#6000) * [plugin] add cast inputs option for zero (#6003) * [pre-commit.ci] pre-commit autoupdate (#5995) updates: - [github.com/psf/black-pre-commit-mirror: 24.4.2 → 24.8.0](https://github.com/psf/black-pre-commit-mirror/compare/24.4.2...24.8.0) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [misc] Bypass the huggingface bug to solve the mask mismatch problem (#5991) * [Feature] Zigzag Ring attention (#5905) * halfway * fix cross-PP-stage position id length diff bug * fix typo * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * unified cross entropy func for all shardformer models * remove redundant lines * add basic ring attn; debug cross entropy * fwd bwd logic complete * fwd bwd logic complete; add experimental triton rescale * precision tests passed * precision tests passed * fix typos and remove misc files * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add sp_mode to benchmark; fix varlen interface * update softmax_lse shape by new interface * change tester name * remove buffer clone; support packed seq layout * add varlen tests * fix typo * all tests passed * add dkv_group; fix mask * remove debug statements --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [misc] update compatibility (#6008) * [misc] update compatibility * [misc] update requirements * [devops] disable requirements cache * [test] fix torch ddp test * [test] fix rerun on address in use * [test] fix lazy init * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix the merge * fix the merge * overlap kv comm with output rescale (#6017) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * fix the merge * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix the merge * fix * fix * fix the merge * fix * [misc] Use dist logger in plugins (#6011) * use dist logger in plugins * remove trash * print on rank 0 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * fix * fix * fix * fix * fix the merge * fix * fix * fix * fix --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Haze188 <haze188@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: zhurunhua <1281592874@qq.com> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: Gao, Ruiyuan <905370712@qq.com> Co-authored-by: hxwang <wang1570@e.ntu.edu.sg> Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local> * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update train_dpo.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update low_level_zero_plugin.py * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [CI] Remove triton version for compatibility bug; update req torch >=2.2 (#6018) * remove triton version * remove torch 2.2 * remove torch 2.1 * debug * remove 2.1 build tests * require torch >=2.2 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [plugin] hotfix zero plugin (#6036) * [plugin] hotfix zero plugin * [plugin] hotfix zero plugin * [Colossal-LLaMA] Refactor latest APIs (#6030) * refactor latest code * update api * add dummy dataset * update Readme * add setup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update files * add PP support * update arguments * update argument * reorg folder * update version * remove IB infor * update utils * update readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update save for zero * update save * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add apex * update --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * add fused norm (#6038) * [FP8] unsqueeze scale to make it compatible with torch.compile (#6040) * [colossalai/checkpoint_io/...] fix bug in load_state_dict_into_model; format error msg (#6020) * fix bug in load_state_dict_into_model; format error msg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update utils.py to support checking missing_keys * Update general_checkpoint_io.py fix bug in missing_keys error message * retrigger tests --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Hotfix] Remove deprecated install (#6042) * remove deprecated install * remove unused folder * [fp8] optimize all-gather (#6043) * [fp8] optimize all-gather * [fp8] fix all gather fp8 ring * [fp8] enable compile * [fp8] fix all gather fp8 ring * [fp8] fix linear hook (#6046) * [fp8] disable all_to_all_fp8 in intranode (#6045) * enhance all_to_all_fp8 with internode comm control * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * disable some fp8 ops due to performance issue * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [release] update version (#6041) * [release] update version * [devops] update comp test * [devops] update comp test debug * [devops] debug comp test * [devops] debug comp test * [devops] debug comp test * [devops] debug comp test * [devops] debug comp test * [Feature] Split cross-entropy computation in SP (#5959) * halfway * fix cross-PP-stage position id length diff bug * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * unified cross entropy func for all shardformer models * remove redundant lines * add basic ring attn; debug cross entropy * fwd bwd logic complete * fwd bwd logic complete; add experimental triton rescale * precision tests passed * precision tests passed * fix typos and remove misc files * update softmax_lse shape by new interface * change tester name * remove buffer clone; support packed seq layout * add varlen tests * fix typo * all tests passed * add dkv_group; fix mask * remove debug statements * adapt chatglm, command-R, qwen * debug * halfway * fix cross-PP-stage position id length diff bug * fix typo * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * unified cross entropy func for all shardformer models * remove redundant lines * add basic ring attn; debug cross entropy * fwd bwd logic complete * fwd bwd logic complete; add experimental triton rescale * precision tests passed * precision tests passed * fix typos and remove misc files * add sp_mode to benchmark; fix varlen interface * update softmax_lse shape by new interface * add varlen tests * fix typo * all tests passed * add dkv_group; fix mask * remove debug statements * add comments * q1 index only once * remove events to simplify stream sync * simplify forward/backward logic * 2d ring forward passed * 2d ring backward passed * fixes * fix ring attn loss * 2D ring backward + llama passed * merge * update logger * fix typo * rebase * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix typo * remove typos * fixes * support GPT --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [hotfix] moe hybrid parallelism benchmark & follow-up fix (#6048) * [example] pass use_fp8_comm flag to all plugins * [example] add mixtral benchmark * [moe] refine assertion and check * [moe] fix mixtral & add more tests * [moe] consider checking dp * sp group and moe_dp_group * [mixtral] remove gate tp & add more tests * [deepseek] fix tp & sp for deepseek * [mixtral] minor fix * [deepseek] add deepseek benchmark * [fp8] hotfix backward hook (#6053) * [fp8] hotfix backward hook * [fp8] hotfix pipeline loss accumulation * [doc] update sp doc (#6055) * update sp doc * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix the sp * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix the attn * fix * fix * fix * fix * [zerobubble]Support ZeroBubble Pipeline (#6034) * [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble; * [feat] add dw test; * [fix] fix weight not close; * [update] update text; * [feat] add test run_fwd_bwd automatic scheduling; * [feat] split communication and calculation; fix pop empty send_bwd_buffer error; * [feat] add test for p & p grad; * [feat] add comments for ZBV func; * [fix] rm useless assign and comments; * [fix] fix ci test; add pytest; * [feat] add run_fwd_bwd_with_microbatch (replace input) & test; add p&p.grad assert close test & all pass; * [feat] add apply v_schedule graph; p & p.grad assert err exist; * [fix] update * [feat] fix ci; add assert; * [feat] fix poc format * [feat] fix func name & ci; add comments; * [fix] fix poc test; add comments in poc; * [feat] add optim backward_b_by_grad * [feat] fix optimizer bwd b & w; support return accum loss & output * [feat] add fwd_bwd_step, run_fwd_only; * [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict; * [fix] fix communication_map; * [feat] update test; rm comments; * [fix] rm zbv in hybridplugin * [fix] fix optim bwd; * [fix] fix optim bwd; * [fix] rm output.data after send fwd; * [fix] fix bwd step if condition; remove useless comments and format info; * [fix] fix detach output & release output; * [fix] rm requir_grad for output; * [fix] fix requir grad position and detach position and input&output local buffer append position; * [feat] add memory assertation; * [fix] fix mem check; * [fix] mem assertation' * [fix] fix mem assertation * [fix] fix mem; use a new model shape; only assert mem less and equal than theo; * [fix] fix model zoo import; * [fix] fix redundant detach & clone; add buffer assertation in the end; * [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap; * [fix] update optim state dict assert (include param group & state); fix mem assert after add optim; * [fix] add testcase with microbatch 4; * [fp8] fix missing fp8_comm flag in mixtral (#6057) * fix * fix * fix * [fp8] Disable all_gather intranode. Disable Redundant all_gather fp8 (#6059) * all_gather only internode, fix pytest * fix cuda arch <89 compile pytest error * fix pytest failure * disable all_gather_into_tensor_flat_fp8 * fix fp8 format * fix pytest * fix conversations * fix chunk tuple to list * [doc] FP8 training and communication document (#6050) * Add FP8 training and communication document * add fp8 docstring for plugins * fix typo * fix typo * fix * fix * [moe] add parallel strategy for shared_expert && fix test for deepseek (#6063) * [ColossalEval] support for vllm (#6056) * support vllm * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * modify vllm and update readme * run pre-commit * remove dupilicated lines and refine code * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update param name * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refine code * update readme * refine code * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [release] update version (#6062) * [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble; * [update] update text; * [feat] add test run_fwd_bwd automatic scheduling; * [feat] fix poc format * [fix] fix poc test; add comments in poc; * [feat] add optim backward_b_by_grad * [feat] fix optimizer bwd b & w; support return accum loss & output * [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict; * [feat] update test; rm comments; * [fix] rm zbv in hybridplugin * [fix] fix optim bwd; * [fix] fix optim bwd; * [fix] rm output.data after send fwd; * [fix] fix bwd step if condition; remove useless comments and format info; * [fix] fix mem check; * [fix] fix mem assertation * [fix] fix mem; use a new model shape; only assert mem less and equal than theo; * [fix] fix model zoo import; * [feat] moehybrid support zerobubble; * [fix] fix zerobubble pp for shardformer type input; * [fix] fix require_grad & deallocate call; * [fix] fix mem assert; * [fix] fix fwd branch, fwd pass both micro_batch & internal_inputs' * [fix] fix pipeline util func deallocate --> release_tensor_data; fix bwd_b loss bwd branch; * [fix] fix zerobubble; support shardformer model type; * [fix] fix test_pipeline_utils ci; * [plugin] hybrid support zero bubble pipeline (#6060) * hybrid support zbv * fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Update zero_bubble_pp.py * fix * fix-ci * fix [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix * [zerobubble]Support ZeroBubble Pipeline (#6034) * [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble; * [feat] add dw test; * [fix] fix weight not close; * [update] update text; * [feat] add test run_fwd_bwd automatic scheduling; * [feat] split communication and calculation; fix pop empty send_bwd_buffer error; * [feat] add test for p & p grad; * [feat] add comments for ZBV func; * [fix] rm useless assign and comments; * [fix] fix ci test; add pytest; * [feat] add run_fwd_bwd_with_microbatch (replace input) & test; add p&p.grad assert close test & all pass; * [feat] add apply v_schedule graph; p & p.grad assert err exist; * [fix] update * [feat] fix ci; add assert; * [feat] fix poc format * [feat] fix func name & ci; add comments; * [fix] fix poc test; add comments in poc; * [feat] add optim backward_b_by_grad * [feat] fix optimizer bwd b & w; support return accum loss & output * [feat] add fwd_bwd_step, run_fwd_only; * [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict; * [fix] fix communication_map; * [feat] update test; rm comments; * [fix] rm zbv in hybridplugin * [fix] fix optim bwd; * [fix] fix optim bwd; * [fix] rm output.data after send fwd; * [fix] fix bwd step if condition; remove useless comments and format info; * [fix] fix detach output & release output; * [fix] rm requir_grad for output; * [fix] fix requir grad position and detach position and input&output local buffer append position; * [feat] add memory assertation; * [fix] fix mem check; * [fix] mem assertation' * [fix] fix mem assertation * [fix] fix mem; use a new model shape; only assert mem less and equal than theo; * [fix] fix model zoo import; * [fix] fix redundant detach & clone; add buffer assertation in the end; * [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap; * [fix] update optim state dict assert (include param group & state); fix mem assert after add optim; * [fix] add testcase with microbatch 4; * hybrid support zbv * fix fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update zero_bubble_pp.py * fix * fix-ci * fix [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix * fix * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: duanjunwen <935724073@qq.com> * [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble; * [update] update text; * [feat] add test run_fwd_bwd automatic scheduling; * [feat] fix poc format * [fix] fix poc test; add comments in poc; * [feat] add optim backward_b_by_grad * [feat] fix optimizer bwd b & w; support return accum loss & output * [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict; * [feat] update test; rm comments; * [fix] fix optim bwd; * [fix] fix optim bwd; * [fix] rm output.data after send fwd; * [fix] fix bwd step if condition; remove useless comments and format info; * [fix] fix mem check; * [fix] fix mem assertation * [fix] fix mem; use a new model shape; only assert mem less and equal than theo; * [fix] fix model zoo import; * [fix] fix mem assert; * [fix] fix fwd branch, fwd pass both micro_batch & internal_inputs' * [plugin] hybrid support zero bubble pipeline (#6060) * hybrid support zbv * fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Update zero_bubble_pp.py * fix * fix-ci * fix [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix * [zerobubble]Support ZeroBubble Pipeline (#6034) * [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble; * [feat] add dw test; * [fix] fix weight not close; * [update] update text; * [feat] add test run_fwd_bwd automatic scheduling; * [feat] split communication and calculation; fix pop empty send_bwd_buffer error; * [feat] add test for p & p grad; * [feat] add comments for ZBV func; * [fix] rm useless assign and comments; * [fix] fix ci test; add pytest; * [feat] add run_fwd_bwd_with_microbatch (replace input) & test; add p&p.grad assert close test & all pass; * [feat] add apply v_schedule graph; p & p.grad assert err exist; * [fix] update * [feat] fix ci; add assert; * [feat] fix poc format * [feat] fix func name & ci; add comments; * [fix] fix poc test; add comments in poc; * [feat] add optim backward_b_by_grad * [feat] fix optimizer bwd b & w; support return accum loss & output * [feat] add fwd_bwd_step, run_fwd_only; * [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict; * [fix] fix communication_map; * [feat] update test; rm comments; * [fix] rm zbv in hybridplugin * [fix] fix optim bwd; * [fix] fix optim bwd; * [fix] rm output.data after send fwd; * [fix] fix bwd step if condition; remove useless comments and format info; * [fix] fix detach output & release output; * [fix] rm requir_grad for output; * [fix] fix requir grad position and detach position and input&output local buffer append position; * [feat] add memory assertation; * [fix] fix mem check; * [fix] mem assertation' * [fix] fix mem assertation * [fix] fix mem; use a new model shape; only assert mem less and equal than theo; * [fix] fix model zoo import; * [fix] fix redundant detach & clone; add buffer assertation in the end; * [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap; * [fix] update optim state dict assert (include param group & state); fix mem assert after add optim; * [fix] add testcase with microbatch 4; * hybrid support zbv * fix fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update zero_bubble_pp.py * fix * fix-ci * fix [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix * fix * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: duanjunwen <935724073@qq.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: HangXu <hangxu0304@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: GuangyaoZhang <xjtu521@qq.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Haze188 <haze188@qq.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: zhurunhua <1281592874@qq.com> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: Gao, Ruiyuan <905370712@qq.com> Co-authored-by: hxwang <wang1570@e.ntu.edu.sg> Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com> Co-authored-by: wangbluo <2538539015@qq.com> Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com>
617 lines
28 KiB
Python
617 lines
28 KiB
Python
from functools import partial
|
|
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.cuda
|
|
import torch.distributed
|
|
from torch.nn import Module, ModuleList
|
|
from torch.utils._pytree import tree_map
|
|
|
|
from colossalai.accelerator import get_accelerator
|
|
from colossalai.interface import OptimizerWrapper
|
|
from colossalai.pipeline.p2p import PipelineP2PCommunication, create_send_metadata
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
|
from colossalai.quantization.fp8 import cast_from_fp8_pipeline, cast_to_fp8_pipeline
|
|
from colossalai.utils import get_current_device
|
|
|
|
from ._utils import detach, get_batch_size, get_micro_batch, merge_batch, model_forward, retain_grad, to_device
|
|
from .base import PipelineSchedule
|
|
|
|
|
|
def _wait_p2p(wait_handles: List[torch.cuda.Event]) -> None:
|
|
if wait_handles is not None:
|
|
for req in wait_handles:
|
|
req.wait()
|
|
|
|
|
|
class InterleavedSchedule(PipelineSchedule):
|
|
def __init__(
|
|
self,
|
|
stage_manager: PipelineStageManager,
|
|
num_model_chunks: int,
|
|
num_microbatch: Optional[int] = None,
|
|
microbatch_size: Optional[int] = None,
|
|
enable_metadata_cache: bool = True,
|
|
overlap_p2p: bool = True,
|
|
fp8_communication: bool = False,
|
|
) -> None:
|
|
super().__init__(stage_manager)
|
|
assert (
|
|
num_microbatch is not None or microbatch_size is not None
|
|
), "Either num_microbatch or microbatch_size should be provided"
|
|
|
|
self.comm = PipelineP2PCommunication(stage_manager, overlap_p2p=overlap_p2p)
|
|
self.overlap_p2p = overlap_p2p
|
|
self.num_microbatch = num_microbatch
|
|
self.microbatch_size = microbatch_size
|
|
self.num_model_chunks = num_model_chunks
|
|
|
|
self.batch: Any
|
|
self.batch_size: int
|
|
self.last_batch_size: Optional[int] = None
|
|
self.microbatch_offset: List[int]
|
|
|
|
# P2PMeta cache
|
|
self.enable_metadata_cache = enable_metadata_cache
|
|
self.send_tensor_metadata = True
|
|
self.send_grad_metadata = True
|
|
self.tensor_metadata_recv = None
|
|
self.grad_metadata_recv = None
|
|
|
|
self.fp8_communication = fp8_communication
|
|
|
|
def load_batch(self, data_iter: Iterable, device: Optional[torch.device] = None) -> None:
|
|
"""Load a batch from data iterator.
|
|
|
|
Args:
|
|
data_iter (Iterable): Data iterator.
|
|
device (Optional[torch.device], optional): Target device. Defaults to None.
|
|
"""
|
|
batch = next(data_iter)
|
|
if device is not None:
|
|
batch = tree_map(partial(to_device, device=device), batch)
|
|
|
|
self.microbatch_offset = [0 for _ in range(self.num_model_chunks)]
|
|
self.batch = batch
|
|
self.batch_size = get_batch_size(batch)
|
|
|
|
if self.microbatch_size is None:
|
|
assert self.batch_size % self.num_microbatch == 0, "Batch size should divided by the number of microbatch"
|
|
self.microbatch_size = self.batch_size // self.num_microbatch
|
|
if self.num_microbatch is None:
|
|
assert self.batch_size % self.microbatch_size == 0, "Batch size should divided by the microbatch size"
|
|
self.num_microbatch = self.batch_size // self.microbatch_size
|
|
|
|
if not self.forward_only:
|
|
assert self.last_batch_size is None or self.last_batch_size == self.batch_size
|
|
assert self.batch_size == self.microbatch_size * self.num_microbatch
|
|
|
|
assert (
|
|
self.num_microbatch % self.stage_manager.num_stages == 0
|
|
), "Number of microbatch should be an integer multiple of number of pipeline parallel devices"
|
|
|
|
if self.forward_only:
|
|
self.num_microbatch = (self.batch_size - 1) // self.microbatch_size + 1
|
|
# NOTE: disable metadata cache when batch size changes (not valid anymore)
|
|
if self.batch_size != self.last_batch_size:
|
|
self.enable_metadata_cache = False
|
|
self.send_tensor_metadata = True
|
|
self.send_grad_metadata = True
|
|
self.tensor_metadata_recv = None
|
|
self.grad_metadata_recv = None
|
|
|
|
self.last_batch_size = self.batch_size
|
|
|
|
def load_micro_batch(self, model_chunk_id: int) -> Any:
|
|
"""Load a micro batch from the current batch.
|
|
|
|
Args:
|
|
microbatch_id (int): the current model chunk idx.
|
|
|
|
Returns:
|
|
Any: Micro batch.
|
|
"""
|
|
assert self.microbatch_offset[model_chunk_id] <= self.batch_size, "Microbatches exhausted"
|
|
micro_batch = get_micro_batch(self.batch, self.microbatch_offset[model_chunk_id], self.microbatch_size)
|
|
self.microbatch_offset[model_chunk_id] += self.microbatch_size
|
|
return tree_map(partial(to_device, device=get_accelerator().get_current_device()), micro_batch)
|
|
|
|
def get_model_chunk_id(self, microbatch_id: int, is_forward: bool) -> int:
|
|
"""Helper method to get the model chunk ID given the iteration number.
|
|
|
|
Args:
|
|
microbatch_id (int): the current microbatch idx
|
|
forward (bool): if is the forward process
|
|
|
|
Returns:
|
|
int: The model chunk idx of the input microbatch_id
|
|
"""
|
|
assert (
|
|
microbatch_id < self.num_microbatch * self.num_model_chunks
|
|
), f"microbatch_id {microbatch_id} is out of range ({self.num_microbatch * self.num_model_chunks})"
|
|
microbatch_id_in_group = microbatch_id % (self.stage_manager.num_stages * self.num_model_chunks)
|
|
model_chunk_id = microbatch_id_in_group // self.stage_manager.num_stages
|
|
if not is_forward:
|
|
# Reverse order
|
|
model_chunk_id = self.num_model_chunks - model_chunk_id - 1
|
|
return model_chunk_id
|
|
|
|
def recv_forward(self, model_chunk_id: int, prev_rank: int = None) -> Tuple[Any, List]:
|
|
"""Copy the forward output from the previous stage in pipeline as the input tensor of this stage.
|
|
For interleaved 1F1B.
|
|
|
|
Args:
|
|
model_chunk_id (int): The current model chunk idx.
|
|
prev_rank (int, optional): The rank of the source of the tensor.
|
|
|
|
Returns:
|
|
Any: The input tensor or input tensor list.
|
|
Any: The wait handles for the communication.
|
|
"""
|
|
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
|
|
if not self.stage_manager.is_first_stage():
|
|
input_tensor, wait_handles = self.comm.recv_forward(prev_rank, metadata_recv=self.tensor_metadata_recv)
|
|
|
|
if self.enable_metadata_cache and self.tensor_metadata_recv is None:
|
|
self.tensor_metadata_recv = create_send_metadata(input_tensor)
|
|
|
|
return input_tensor, wait_handles
|
|
return None, []
|
|
|
|
def recv_backward(self, model_chunk_id: int, next_rank: int = None) -> Tuple[Any, List]:
|
|
"""Copy the gradient tensor from the next stage in pipeline as the input gradient of this stage.
|
|
For interleaved 1F1B.
|
|
|
|
Args:
|
|
model_chunk_id (int): The current model chunk idx.
|
|
next_rank (int, optional): The rank of the source of the tensor.
|
|
|
|
Returns:
|
|
Any: The input gradient tensor or gradient tensor list.
|
|
Any: The wait handles for the communication.
|
|
"""
|
|
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
|
|
if not self.stage_manager.is_last_stage():
|
|
output_tensor_grad, wait_handles = self.comm.recv_backward(
|
|
next_rank, metadata_recv=self.grad_metadata_recv
|
|
)
|
|
if self.enable_metadata_cache and self.grad_metadata_recv is None:
|
|
self.grad_metadata_recv = create_send_metadata(output_tensor_grad)
|
|
return output_tensor_grad, wait_handles
|
|
|
|
return None, []
|
|
|
|
def send_forward(self, model_chunk_id: int, output_tensor: Any, next_rank: int = None) -> List:
|
|
"""Sends the input tensor to the next stage in pipeline.
|
|
For interleaved 1F1B.
|
|
|
|
Args:
|
|
model_chunk_id (int): The current model chunk idx.
|
|
output_object (Any): Object to be sent.
|
|
next_rank (int, optional): The rank of the recipient of the tensor.
|
|
|
|
Returns:
|
|
Any: The wait handles for the communication.
|
|
"""
|
|
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
|
|
if not self.stage_manager.is_last_stage():
|
|
if self.fp8_communication:
|
|
cast_to_fp8_pipeline(output_tensor)
|
|
send_handles = self.comm.send_forward(output_tensor, next_rank, send_metadata=self.send_tensor_metadata)
|
|
self.send_tensor_metadata = not self.enable_metadata_cache
|
|
if self.fp8_communication:
|
|
cast_from_fp8_pipeline(output_tensor)
|
|
return send_handles
|
|
return []
|
|
|
|
def send_backward(self, model_chunk_id: int, input_tensor_grad: Any, prev_rank: int = None) -> List:
|
|
"""Sends the gradient tensor to the previous stage in pipeline.
|
|
For interleaved 1F1B.
|
|
|
|
Args:
|
|
model_chunk_id (int): The current model chunk idx.
|
|
input_object (Any): Object to be sent.
|
|
prev_rank (int, optional): The rank of the recipient of the tensor
|
|
|
|
Returns:
|
|
Any: The wait handles for the communication.
|
|
"""
|
|
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
|
|
if not self.stage_manager.is_first_stage():
|
|
if self.fp8_communication:
|
|
cast_to_fp8_pipeline(input_tensor_grad)
|
|
send_handles = self.comm.send_backward(
|
|
input_tensor_grad, prev_rank, send_metadata=self.send_grad_metadata
|
|
)
|
|
self.send_grad_metadata = not self.enable_metadata_cache
|
|
if self.fp8_communication:
|
|
cast_from_fp8_pipeline(input_tensor_grad)
|
|
return send_handles
|
|
return []
|
|
|
|
def send_forward_recv_forward(
|
|
self, model_chunk_id_send: int, model_chunk_id_recv: int, output_tensor: Any, send_first: bool = True
|
|
) -> Tuple[Any, List]:
|
|
with self.stage_manager.switch_model_chunk_id(model_chunk_id_send):
|
|
is_send = not self.stage_manager.is_last_stage()
|
|
with self.stage_manager.switch_model_chunk_id(model_chunk_id_recv):
|
|
is_recv = not self.stage_manager.is_first_stage()
|
|
if self.fp8_communication:
|
|
cast_to_fp8_pipeline(output_tensor)
|
|
input_tensor, wait_handles = self.comm.send_forward_recv_forward(
|
|
output_tensor,
|
|
is_send,
|
|
is_recv,
|
|
send_metadata=self.send_tensor_metadata,
|
|
metadata_recv=self.tensor_metadata_recv,
|
|
send_first=send_first,
|
|
)
|
|
# Cache metadata
|
|
self.send_tensor_metadata = not self.enable_metadata_cache and is_send
|
|
if is_recv and self.enable_metadata_cache and self.tensor_metadata_recv is None:
|
|
self.tensor_metadata_recv = create_send_metadata(input_tensor)
|
|
|
|
if self.fp8_communication:
|
|
cast_from_fp8_pipeline(output_tensor)
|
|
return input_tensor, wait_handles
|
|
|
|
def send_backward_recv_backward(
|
|
self, model_chunk_id_send: int, model_chunk_id_recv: int, input_tensor_grad: Any, send_first: bool = True
|
|
) -> Tuple[Any, List]:
|
|
with self.stage_manager.switch_model_chunk_id(model_chunk_id_send):
|
|
is_send = not self.stage_manager.is_first_stage()
|
|
with self.stage_manager.switch_model_chunk_id(model_chunk_id_recv):
|
|
is_recv = not self.stage_manager.is_last_stage()
|
|
if self.fp8_communication:
|
|
cast_to_fp8_pipeline(input_tensor_grad)
|
|
output_tensor_grad, wait_handles = self.comm.send_backward_recv_backward(
|
|
input_tensor_grad,
|
|
is_send,
|
|
is_recv,
|
|
send_metadata=self.send_grad_metadata,
|
|
metadata_recv=self.grad_metadata_recv,
|
|
send_first=send_first,
|
|
)
|
|
# Cache metadata
|
|
self.send_grad_metadata = not self.enable_metadata_cache and is_send
|
|
if is_recv and self.enable_metadata_cache and self.grad_metadata_recv is None:
|
|
self.grad_metadata_recv = create_send_metadata(output_tensor_grad)
|
|
if self.fp8_communication:
|
|
cast_from_fp8_pipeline(input_tensor_grad)
|
|
return output_tensor_grad, wait_handles
|
|
|
|
def forward_step(
|
|
self,
|
|
model_chunk: Union[ModuleList, Module],
|
|
model_chunk_id: int,
|
|
input_obj: Optional[dict],
|
|
criterion: Callable,
|
|
accum_loss: Optional[torch.Tensor] = None,
|
|
outputs: Optional[List[Any]] = None,
|
|
) -> Union[torch.Tensor, dict]:
|
|
"""Forward one step of the pipeline
|
|
Args:
|
|
model (ModuleList or Module): Model Chunk to be run
|
|
input_obj (Optional[dict]): The output from the previous stage. If it is the first stage, the `input_obj` is None.
|
|
criterion (Callable): Criterion to calculate loss.
|
|
accum_loss (Optional[torch.Tensor], optional): Accumulated loss. Defaults to None.
|
|
outputs (Optional[List[Any]], optional): List to store the output of the last stage (final output). Defaults to None.
|
|
|
|
Returns:
|
|
Union[torch.Tensor, dict]: The intermediate output (dict) of the current stage. If it is the last stage, the output is the loss (Tensor).
|
|
"""
|
|
# Load input ids, attention mask and labels
|
|
micro_batch = self.load_micro_batch(model_chunk_id=model_chunk_id)
|
|
|
|
# for the first stage, input_obj is None
|
|
# for other stages, input_obj is the output of the previous stage containing hidden_states etc.
|
|
# Only attention_mask from micro_batch is used
|
|
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
|
|
if isinstance(model_chunk, ModuleList):
|
|
output_obj = model_forward(model_chunk[model_chunk_id], micro_batch, input_obj)
|
|
else:
|
|
# NOTE: in shardformer, each device still has the entire model, so we need to use relevant stage layers
|
|
internal_inputs = {} if input_obj is None else input_obj
|
|
internal_inputs["stage_index"] = self.stage_manager.stage_indices[model_chunk_id]
|
|
output_obj = model_forward(model_chunk, micro_batch, internal_inputs)
|
|
|
|
if self.stage_manager.is_last_stage():
|
|
loss = criterion(output_obj, micro_batch) / self.num_microbatch
|
|
if accum_loss is not None:
|
|
accum_loss.add_(loss.data)
|
|
if outputs is not None:
|
|
outputs.append(tree_map(detach, output_obj))
|
|
return loss
|
|
else:
|
|
return output_obj
|
|
|
|
def backward_step(
|
|
self,
|
|
optimizer: OptimizerWrapper,
|
|
input_obj: Optional[dict],
|
|
output_obj: Union[dict, torch.Tensor],
|
|
output_obj_grad: Optional[dict],
|
|
) -> Optional[dict]:
|
|
"""Backward one step of the pipeline
|
|
|
|
Args:
|
|
optimizer (OptimizerWrapper): Optimizer to update the model
|
|
input_obj (Optional[dict]): Output of the previous stage. If it is the first stage, the `input_obj` is None.
|
|
output_obj (Union[dict, torch.Tensor]): Output of the current stage. If it is the last stage, the output is the loss (Tensor).
|
|
output_obj_grad (dict): Gradient of the `output_obj`. If it is the last stage, the `output_obj_grad` is None.
|
|
|
|
Returns:
|
|
Optional[dict]: Gradient of the `input_obj`. If it is the first stage, the `input_obj_grad` is None.
|
|
"""
|
|
|
|
# Retain the grad on the input_obj.
|
|
tree_map(retain_grad, input_obj)
|
|
|
|
# Backward pass.
|
|
if output_obj_grad is None:
|
|
optimizer.backward(output_obj)
|
|
else:
|
|
if "backward_tensor_keys" not in output_obj:
|
|
for k, grad in output_obj_grad.items():
|
|
optimizer.backward_by_grad(output_obj[k], grad)
|
|
else:
|
|
for k, grad in output_obj_grad.items():
|
|
output_obj[k].grad = grad
|
|
for k in output_obj["backward_tensor_keys"]:
|
|
tensor_to_backward = output_obj[k]
|
|
optimizer.backward_by_grad(tensor_to_backward, tensor_to_backward.grad)
|
|
|
|
# Collect the grad of the input_obj.
|
|
input_obj_grad = None
|
|
if input_obj is not None:
|
|
input_obj_grad = {}
|
|
for k, v in input_obj.items():
|
|
if isinstance(v, torch.Tensor) and v.grad is not None:
|
|
input_obj_grad[k] = v.grad
|
|
return input_obj_grad
|
|
|
|
def run_forward_only(
|
|
self,
|
|
model_chunk: Union[ModuleList, Module],
|
|
data_iter: Iterable,
|
|
criterion: Callable[..., Any],
|
|
return_loss: bool = False,
|
|
return_outputs: bool = False,
|
|
) -> Dict:
|
|
assert self.forward_only
|
|
|
|
self.load_batch(data_iter)
|
|
|
|
outputs = [] if return_outputs and self.stage_manager.is_last_stage(ignore_chunk=True) else None
|
|
|
|
accum_loss = None
|
|
if return_loss and self.stage_manager.is_last_stage(ignore_chunk=True):
|
|
accum_loss = torch.scalar_tensor(0, device=get_current_device())
|
|
|
|
fwd_wait_handles = []
|
|
model_chunk_id = self.get_model_chunk_id(0, is_forward=True)
|
|
input_obj, fwd_wait_handles = self.recv_forward(model_chunk_id)
|
|
|
|
for i in range(self.num_microbatch * self.num_model_chunks):
|
|
last_batch = i == self.num_microbatch * self.num_model_chunks - 1
|
|
model_chunk_id = self.get_model_chunk_id(i, is_forward=True)
|
|
|
|
# Wait until current input is received
|
|
_wait_p2p(fwd_wait_handles)
|
|
if self.fp8_communication and input_obj is not None:
|
|
cast_from_fp8_pipeline(input_obj)
|
|
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
|
|
|
|
if not last_batch:
|
|
input_obj, fwd_wait_handles = self.send_forward_recv_forward(
|
|
model_chunk_id_send=model_chunk_id,
|
|
model_chunk_id_recv=self.get_model_chunk_id(i + 1, is_forward=True),
|
|
output_tensor=output_obj,
|
|
send_first=self.stage_manager.stage % 2 == 0,
|
|
)
|
|
else:
|
|
fwd_wait_handles = self.send_forward(model_chunk_id, output_obj)
|
|
|
|
if outputs is not None:
|
|
outputs = merge_batch(outputs)
|
|
return {"loss": accum_loss, "outputs": outputs}
|
|
|
|
def run_forward_backward(
|
|
self,
|
|
model_chunk: Union[ModuleList, Module],
|
|
data_iter: Iterable,
|
|
criterion: Callable[..., Any],
|
|
optimizer: Optional[OptimizerWrapper] = None,
|
|
return_loss: bool = False,
|
|
return_outputs: bool = False,
|
|
) -> Dict:
|
|
"""
|
|
Runs interleaved schedule, with communication between pipeline stages.
|
|
"""
|
|
assert not self.forward_only
|
|
|
|
self.load_batch(data_iter)
|
|
|
|
num_microbatch = self.num_microbatch * self.num_model_chunks
|
|
# Forward + until 1st backward
|
|
num_warmup_microbatch = (self.stage_manager.num_stages - self.stage_manager.stage - 1) * 2
|
|
# Steps needed to reach the last chunk
|
|
num_warmup_microbatch += (self.num_model_chunks - 1) * self.stage_manager.num_stages
|
|
num_warmup_microbatch = min(num_warmup_microbatch, num_microbatch)
|
|
num_microbatch_remaining = num_microbatch - num_warmup_microbatch
|
|
|
|
# Input, output tensors only need to be saved when doing backward passes
|
|
input_objs = [[] for _ in range(self.num_model_chunks)]
|
|
output_objs = [[] for _ in range(self.num_model_chunks)]
|
|
|
|
outputs = [] if return_outputs and self.stage_manager.is_last_stage(ignore_chunk=True) else None
|
|
|
|
accum_loss = None
|
|
if return_loss and self.stage_manager.is_last_stage(ignore_chunk=True):
|
|
accum_loss = torch.scalar_tensor(0, device=get_current_device())
|
|
|
|
bwd_wait_handles = []
|
|
# Get the 1st input batch
|
|
model_chunk_id = self.get_model_chunk_id(0, is_forward=True)
|
|
input_obj, fwd_wait_handles = self.recv_forward(model_chunk_id)
|
|
|
|
# Run warmup forward passes.
|
|
for i in range(num_warmup_microbatch):
|
|
last_batch = i == num_warmup_microbatch - 1
|
|
model_chunk_id = self.get_model_chunk_id(i, is_forward=True)
|
|
|
|
# Wait for input
|
|
_wait_p2p(fwd_wait_handles)
|
|
if self.fp8_communication and input_obj is not None:
|
|
cast_from_fp8_pipeline(input_obj)
|
|
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
|
|
input_objs[model_chunk_id].append(input_obj)
|
|
output_objs[model_chunk_id].append(output_obj)
|
|
|
|
if last_batch and num_microbatch_remaining == 0:
|
|
fwd_wait_handles = self.send_forward(model_chunk_id, output_obj)
|
|
else:
|
|
input_obj, fwd_wait_handles = self.send_forward_recv_forward(
|
|
model_chunk_id_send=model_chunk_id,
|
|
model_chunk_id_recv=self.get_model_chunk_id(i + 1, is_forward=True),
|
|
output_tensor=output_obj,
|
|
send_first=self.stage_manager.stage % 2 == 0,
|
|
)
|
|
|
|
if num_microbatch_remaining > 0:
|
|
model_chunk_id = self.get_model_chunk_id(0, is_forward=False)
|
|
output_obj_grad, bwd_wait_handles = self.recv_backward(model_chunk_id)
|
|
|
|
# Run 1F1B in steady state.
|
|
for i in range(num_microbatch_remaining):
|
|
fwd_batch_id = i + num_warmup_microbatch
|
|
last_batch = i == num_microbatch_remaining - 1
|
|
model_chunk_id = self.get_model_chunk_id(fwd_batch_id, is_forward=True)
|
|
|
|
# Wait for input.
|
|
_wait_p2p(fwd_wait_handles)
|
|
if self.fp8_communication and input_obj is not None:
|
|
cast_from_fp8_pipeline(input_obj)
|
|
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
|
|
# Add input_obj and output_obj to end of list.
|
|
input_objs[model_chunk_id].append(input_obj)
|
|
output_objs[model_chunk_id].append(output_obj)
|
|
|
|
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
|
|
# Pop output_obj and output_obj from the start of the list for the backward pass.
|
|
_input_obj = input_objs[model_chunk_id].pop(0)
|
|
_output_obj = output_objs[model_chunk_id].pop(0)
|
|
|
|
# Helper functions
|
|
def send_forward_recv_forward():
|
|
if last_batch:
|
|
model_chunk_id = self.get_model_chunk_id(fwd_batch_id, is_forward=True)
|
|
wait_handles = self.send_forward(model_chunk_id, output_obj)
|
|
return None, wait_handles
|
|
else:
|
|
input_obj, wait_handles = self.send_forward_recv_forward(
|
|
model_chunk_id_send=self.get_model_chunk_id(fwd_batch_id, is_forward=True),
|
|
model_chunk_id_recv=self.get_model_chunk_id(fwd_batch_id + 1, is_forward=True),
|
|
output_tensor=output_obj,
|
|
send_first=self.stage_manager.stage % 2 == 0
|
|
and i > 0, # Receive from warmup stage first in the first batch
|
|
)
|
|
return input_obj, wait_handles
|
|
|
|
def send_backward_recv_backward():
|
|
no_cooldown = num_microbatch == num_microbatch_remaining
|
|
if last_batch and no_cooldown:
|
|
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
|
|
wait_handles = self.send_backward(model_chunk_id, input_obj_grad)
|
|
return None, wait_handles
|
|
else:
|
|
output_obj_grad, wait_handles = self.send_backward_recv_backward(
|
|
model_chunk_id_send=self.get_model_chunk_id(i, is_forward=False),
|
|
model_chunk_id_recv=self.get_model_chunk_id(i + 1, is_forward=False),
|
|
input_tensor_grad=input_obj_grad,
|
|
send_first=self.stage_manager.stage % 2 == 0,
|
|
)
|
|
return output_obj_grad, wait_handles
|
|
|
|
input_obj, fwd_wait_handles = send_forward_recv_forward()
|
|
# Wait for upstream grad
|
|
_wait_p2p(bwd_wait_handles)
|
|
if self.fp8_communication and output_obj_grad is not None:
|
|
cast_from_fp8_pipeline(output_obj_grad)
|
|
input_obj_grad = self.backward_step(optimizer, _input_obj, _output_obj, output_obj_grad)
|
|
# NOTE: It's documented by NCCL that running two concurrent communicators (batch_isend_irecv)
|
|
# risks deadlock (https://docs.nvidia.com/deeplearning/nccl/archives/nccl_2134/user-guide/docs/usage/communicators.html)
|
|
# however in practice this works fine, and Megatron does this too
|
|
# (https://github.com/microsoft/Megatron-DeepSpeed/blob/bcedecd1ff788d4d363f3365fd396053a08d65be/megatron/core/pipeline_parallel/schedules.py#L774)
|
|
# if deadlock, call _wait_p2p(fwd_wait_handles) here
|
|
output_obj_grad, bwd_wait_handles = send_backward_recv_backward()
|
|
|
|
if num_microbatch_remaining == 0:
|
|
model_chunk_id = self.get_model_chunk_id(0, is_forward=False)
|
|
output_obj_grad, bwd_wait_handles = self.recv_backward(model_chunk_id)
|
|
|
|
# Run cooldown backward passes.
|
|
for i in range(num_microbatch_remaining, num_microbatch):
|
|
last_batch = i == num_microbatch - 1
|
|
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
|
|
_input_obj = input_objs[model_chunk_id].pop(0)
|
|
_output_obj = output_objs[model_chunk_id].pop(0)
|
|
|
|
# Wait for upstream grad
|
|
_wait_p2p(bwd_wait_handles)
|
|
if self.fp8_communication and output_obj_grad is not None:
|
|
cast_from_fp8_pipeline(output_obj_grad)
|
|
# backward local grads
|
|
input_obj_grad = self.backward_step(optimizer, _input_obj, _output_obj, output_obj_grad)
|
|
if not last_batch:
|
|
output_obj_grad, bwd_wait_handles = self.send_backward_recv_backward(
|
|
model_chunk_id_send=self.get_model_chunk_id(i, is_forward=False),
|
|
model_chunk_id_recv=self.get_model_chunk_id(i + 1, is_forward=False),
|
|
input_tensor_grad=input_obj_grad,
|
|
send_first=self.stage_manager.stage % 2 == 0 and i > num_microbatch_remaining,
|
|
)
|
|
assert (not self.overlap_p2p) or len(bwd_wait_handles) > 0
|
|
else:
|
|
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
|
|
_ = self.send_backward(model_chunk_id, input_obj_grad)
|
|
|
|
assert all(len(v) == 0 for v in input_objs) and all(len(v) == 0 for v in output_objs)
|
|
|
|
if outputs is not None:
|
|
outputs = merge_batch(outputs)
|
|
return {"loss": accum_loss, "outputs": outputs}
|
|
|
|
def forward_backward_step(
|
|
self,
|
|
model_chunk: Union[ModuleList, Module],
|
|
data_iter: Iterable,
|
|
criterion: Callable[..., Any],
|
|
optimizer: Optional[OptimizerWrapper] = None,
|
|
return_loss: bool = False,
|
|
return_outputs: bool = False,
|
|
) -> dict:
|
|
"""
|
|
Args:
|
|
model_chunk (ModuleList or Module): Model Chunk to be trained. Original interleaved uses a module list whereas shardformer uses entire model + layer specification
|
|
data_iter (Iterable): Data iterator.
|
|
criterion (Callable[[Any, Any], Tensor]): Criterion to be used. It should take two arguments: model outputs and inputs, and returns loss tensor.
|
|
optimizer (OptimizerWrapper, optional): Optimizer to be used. Can be None when only forward is executed. Defaults to None.
|
|
return_loss (bool, optional): Whether to return loss. Defaults to False. Whether to return loss.
|
|
return_outputs (bool, optional): Whether to return model outputs. Defaults to False. Whether to return model outputs.
|
|
|
|
Returns:
|
|
dict: A dict with keys: 'loss' and 'outputs'.
|
|
"""
|
|
self.forward_only = not torch.is_grad_enabled()
|
|
if optimizer is None:
|
|
assert self.forward_only, "Optimizer should be passed when doing backward."
|
|
|
|
if self.forward_only:
|
|
result = self.run_forward_only(model_chunk, data_iter, criterion, return_loss, return_outputs)
|
|
else:
|
|
result = self.run_forward_backward(
|
|
model_chunk, data_iter, criterion, optimizer, return_loss, return_outputs
|
|
)
|
|
|
|
return result
|