mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-10-22 23:32:37 +00:00
* Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit2e0b0b7699
. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit2e0b0b7699
. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit2e0b0b7699
. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
155 lines
5.1 KiB
Python
155 lines
5.1 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
from typing import Iterable, Any
|
|
from colossalai.nn.optimizer import ColossalaiOptimizer
|
|
from torch.nn.parallel.distributed import DistributedDataParallel
|
|
from torch.optim import Optimizer
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
from torch.utils.data import DataLoader
|
|
from colossalai.utils import conditional_context
|
|
from colossalai.engine import BaseGradientHandler
|
|
|
|
|
|
class GradAccumOptimizer(ColossalaiOptimizer):
|
|
|
|
def __init__(self, optim: Optimizer, accumulate_size: int, model: nn.Module = None):
|
|
super().__init__(optim)
|
|
self.accumulate_size = accumulate_size
|
|
self.accumulate_step = 0
|
|
|
|
# handle pytorch ddp auto all reduce
|
|
self.model = model
|
|
self.is_torch_ddp = isinstance(self.model, DistributedDataParallel)
|
|
|
|
def zero_grad(self, *args, **kwargs):
|
|
if self.accumulate_step == 0:
|
|
self.optim.zero_grad(*args, **kwargs)
|
|
|
|
def step(self, *args, **kwargs):
|
|
if self.accumulate_step < self.accumulate_size:
|
|
return None
|
|
else:
|
|
self.accumulate_step = 0
|
|
return self.optim.step(*args, **kwargs)
|
|
|
|
def clip_grad_norm(self, model: nn.Module, max_norm: float):
|
|
if self.accumulate_step < self.accumulate_size:
|
|
pass
|
|
else:
|
|
self.optim.clip_grad_norm(model, max_norm)
|
|
|
|
def backward(self, loss: Tensor):
|
|
self.accumulate_step += 1
|
|
|
|
if self.is_torch_ddp:
|
|
no_sync = self.accumulate_step < self.accumulate_size
|
|
with conditional_context(self.model.no_sync(), enable=no_sync):
|
|
scaled_loss = loss / self.accumulate_size
|
|
self.optim.backward(scaled_loss)
|
|
else:
|
|
scaled_loss = loss / self.accumulate_size
|
|
self.optim.backward(scaled_loss)
|
|
|
|
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
|
|
no_sync = self.is_torch_ddp and self.accumulate_step < self.accumulate_size
|
|
|
|
if no_sync:
|
|
with self.model.no_sync():
|
|
self.optim.backward_by_grad(tensor, grad)
|
|
else:
|
|
self.optim.backward_by_grad(tensor, grad)
|
|
|
|
|
|
class GradAccumDataloader():
|
|
|
|
def __init__(self, dataloader: Iterable, accumulate_size: int) -> None:
|
|
self.dataloader = dataloader
|
|
self.consume_remain_data = not isinstance(dataloader, DataLoader)
|
|
self.steps_per_epoch = len(dataloader) - len(dataloader) % accumulate_size
|
|
|
|
def __getattr__(self, __name: str) -> Any:
|
|
return getattr(self.dataloader, __name)
|
|
|
|
def __len__(self):
|
|
return self.steps_per_epoch
|
|
|
|
def __iter__(self):
|
|
self._cur_step = 0
|
|
self._dataiter = iter(self.dataloader)
|
|
return self
|
|
|
|
def __next__(self) -> Any:
|
|
if self._cur_step < self.steps_per_epoch:
|
|
self._cur_step += 1
|
|
|
|
if self._cur_step == self.steps_per_epoch and self.consume_remain_data:
|
|
# this is to handle non standard pytorch dataloader
|
|
# such as dali dataloader
|
|
while True:
|
|
try:
|
|
_ = next(self._dataiter)
|
|
except StopIteration:
|
|
break
|
|
return next(self._dataiter)
|
|
else:
|
|
raise StopIteration
|
|
|
|
|
|
class GradAccumLrSchedulerByStep(_LRScheduler):
|
|
|
|
def __init__(self, lr_scheduler: _LRScheduler, accumulate_size: int) -> None:
|
|
self.lr_scheduler = lr_scheduler
|
|
self.accumulate_size = accumulate_size
|
|
self.accumulate_step = 0
|
|
|
|
@staticmethod
|
|
def compute_effective_steps_per_epoch(dataloader: Iterable, accumulate_size: int):
|
|
return len(dataloader) // accumulate_size
|
|
|
|
def __getattr__(self, __name: str) -> Any:
|
|
return getattr(self.lr_scheduler, __name)
|
|
|
|
def step(self, *args, **kwargs):
|
|
self.accumulate_step += 1
|
|
if self.accumulate_step < self.accumulate_size:
|
|
pass
|
|
else:
|
|
self.accumulate_step = 0
|
|
self.lr_scheduler.step(*args, **kwargs)
|
|
|
|
def get_lr(self):
|
|
return self.lr_scheduler.get_lr()
|
|
|
|
def get_last_lr(self):
|
|
return self.lr_scheduler.get_last_lr()
|
|
|
|
def print_lr(self, *args, **kwargs):
|
|
self.lr_scheduler.print_lr(*args, **kwargs)
|
|
|
|
def state_dict(self) -> dict:
|
|
return self.lr_scheduler.state_dict()
|
|
|
|
def load_state_dict(self, state_dict: dict) -> None:
|
|
self.lr_scheduler.load_state_dict(state_dict)
|
|
|
|
|
|
class GradAccumGradientHandler():
|
|
|
|
def __init__(self, grad_handler: BaseGradientHandler, accumulate_size: int) -> None:
|
|
assert isinstance(grad_handler, BaseGradientHandler), \
|
|
f'expected grad_handler to be type BaseGradientHandler, but got {type(grad_handler)}'
|
|
self.grad_handler = grad_handler
|
|
self.accumulate_size = accumulate_size
|
|
self.accumulate_step = 0
|
|
|
|
def handle_gradient(self):
|
|
self.accumulate_step += 1
|
|
if self.accumulate_step < self.accumulate_size:
|
|
pass
|
|
else:
|
|
self.accumulate_step = 0
|
|
self.grad_handler.handle_gradient()
|