ColossalAI/tests/test_trainer/test_trainer_with_pipe_schedule.py
Frank Lee da01c234e1
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler

* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)

* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes

* fixed trainer

* Revert "fixed trainer"

This reverts commit 2e0b0b7699.

* improved consistency between trainer, engine and schedule (#23)

Co-authored-by: 1SAA <c2h214748@gmail.com>

* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000

* Integrate 1d tensor parallel in Colossal-AI (#39)

* fixed 1D and 2D convergence (#38)

* optimized 2D operations

* fixed 1D ViT convergence problem

* Feature/ddp (#49)

* remove redundancy func in setup (#19) (#20)

* use env to control the language of doc (#24) (#25)

* Support TP-compatible Torch AMP and Update trainer API (#27)

* Add gradient accumulation, fix lr scheduler

* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)

* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes

* fixed trainer

* Revert "fixed trainer"

This reverts commit 2e0b0b7699.

* improved consistency between trainer, engine and schedule (#23)

Co-authored-by: 1SAA <c2h214748@gmail.com>

Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>

* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)

* add explanation for ViT example (#35) (#36)

* support torch ddp

* fix loss accumulation

* add log for ddp

* change seed

* modify timing hook

Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>

* Feature/pipeline (#40)

* remove redundancy func in setup (#19) (#20)

* use env to control the language of doc (#24) (#25)

* Support TP-compatible Torch AMP and Update trainer API (#27)

* Add gradient accumulation, fix lr scheduler

* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)

* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes

* fixed trainer

* Revert "fixed trainer"

This reverts commit 2e0b0b7699.

* improved consistency between trainer, engine and schedule (#23)

Co-authored-by: 1SAA <c2h214748@gmail.com>

Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>

* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)

* add explanation for ViT example (#35) (#36)

* optimize communication of pipeline parallel

* fix grad clip for pipeline

Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>

* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)

* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset

* update api for better usability (#58)

update api for better usability

Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 15:08:29 +08:00

147 lines
3.9 KiB
Python

import colossalai
import os
import torch
from colossalai.amp.amp_type import AMP_TYPE
from colossalai.context.parallel_mode import ParallelMode
import torch.nn as nn
from pathlib import Path
from torchvision import transforms
from torch.optim import Adam
from colossalai.initialize import get_default_parser
from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger
from colossalai.trainer import Trainer
from colossalai.utils import get_dataloader
from colossalai.engine.schedule import PipelineSchedule
from torchvision.models import resnet18
from torchvision.datasets import CIFAR10
BATCH_SIZE = 32
IMG_SIZE = 32
NUM_EPOCHS = 200
CONFIG = dict(
parallel=dict(
pipeline=2,
),
# Config
fp16=dict(
mode=AMP_TYPE.TORCH
)
)
def test_trainer():
parser = get_default_parser()
args = parser.parse_args()
colossalai.launch(
config=CONFIG,
rank=args.rank,
world_size=args.world_size,
host=args.host,
port=args.port,
backend=args.backend
)
# build model
model = resnet18(num_classes=10)
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
model = nn.Sequential(
model.conv1,
model.bn1,
model.relu,
model.maxpool,
model.layer1,
model.layer2
)
elif gpc.get_local_rank(ParallelMode.PIPELINE) == 1:
from functools import partial
class Flatten(nn.Module):
def forward(self, x):
return torch.flatten(x, 1)
model = nn.Sequential(
model.layer3,
model.layer4,
model.avgpool,
Flatten(),
model.fc
)
# build dataloaders
train_dataset = CIFAR10(
root=Path(os.environ['DATA']),
download=True,
transform=transforms.Compose(
[
transforms.Resize(size=(IMG_SIZE, IMG_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
]
)
)
test_dataset = CIFAR10(
root=Path(os.environ['DATA']),
train=False,
download=True,
transform=transforms.Compose(
[
transforms.Resize(size=(IMG_SIZE, IMG_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
]
)
)
train_dataloader = get_dataloader(dataset=train_dataset,
shuffle=True,
batch_size=BATCH_SIZE,
num_workers=1,
pin_memory=True,
drop_last=True)
test_dataloader = get_dataloader(dataset=test_dataset,
batch_size=BATCH_SIZE,
num_workers=1,
pin_memory=True,
drop_last=True)
# build optimizer
optimizer = Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
engine, train_dataloader, *args = colossalai.initialize(
model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader
)
logger = get_dist_logger()
logger.info("engine is built", ranks=[0])
pipe_schedule = PipelineSchedule(num_microbatches=4)
trainer = Trainer(engine=engine,
schedule=pipe_schedule,
logger=logger)
logger.info("trainer is built", ranks=[0])
logger.info("start training", ranks=[0])
trainer.fit(
train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
epochs=NUM_EPOCHS,
max_steps=100,
display_progress=True,
test_interval=5
)
if __name__ == '__main__':
test_trainer()