mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-01 03:45:27 +00:00
67 lines
2.1 KiB
Python
67 lines
2.1 KiB
Python
from typing import Any, Dict, List
|
|
|
|
import torch
|
|
|
|
|
|
def unbind_batch(batch: Dict[str, torch.Tensor]) -> List[Dict[str, torch.Tensor]]:
|
|
batches = []
|
|
for k, v in batch.items():
|
|
if len(batches) == 0:
|
|
unbinded_tensors = v.unbind(0)
|
|
batches = [{k: tensor} for tensor in unbinded_tensors]
|
|
else:
|
|
unbinded_tensors = v.unbind(0)
|
|
assert len(batches) == len(unbinded_tensors)
|
|
for i, tensor in enumerate(unbinded_tensors):
|
|
batches[i][k] = tensor
|
|
return batches
|
|
|
|
|
|
def bind_batch(batches: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
|
|
batch = {}
|
|
for k in batches[0].keys():
|
|
batch[k] = torch.stack([batch[k] for batch in batches], dim=0)
|
|
return batch
|
|
|
|
|
|
def pre_send(batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
# compress mask to save bandwidth
|
|
if "attention_mask" in batch:
|
|
batch["attention_mask"] = batch["attention_mask"].to(torch.bool)
|
|
if "action_mask" in batch:
|
|
batch["action_mask"] = batch["action_mask"].to(torch.bool)
|
|
return batch
|
|
|
|
|
|
def post_recv(batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
# decompress mask
|
|
if "attention_mask" in batch:
|
|
batch["attention_mask"] = batch["attention_mask"].to(torch.int)
|
|
if "action_mask" in batch:
|
|
batch["action_mask"] = batch["action_mask"].to(torch.int)
|
|
return batch
|
|
|
|
|
|
def update_by_default(data: Dict[str, Any], default: Dict[str, Any]) -> Dict[str, Any]:
|
|
data = data.copy()
|
|
for k, v in default.items():
|
|
if k not in data:
|
|
data[k] = v
|
|
return data
|
|
|
|
|
|
def log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Compute the log probabilities from logits for the given labels.
|
|
|
|
Args:
|
|
logits (torch.Tensor): The input logits.
|
|
labels (torch.Tensor): The target labels.
|
|
|
|
Returns:
|
|
torch.Tensor: The log probabilities corresponding to the labels.
|
|
"""
|
|
log_probs = torch.log_softmax(logits, dim=-1)
|
|
per_label_logps = log_probs.gather(dim=-1, index=labels.unsqueeze(-1))
|
|
return per_label_logps.squeeze(-1)
|