ColossalAI/applications/ColossalQA/examples/webui_demo/webui.py
YeAnbang e53e729d8e
[Feature] Add document retrieval QA (#5020)
* add langchain

* add langchain

* Add files via upload

* add langchain

* fix style

* fix style: remove extra space

* add pytest; modified retriever

* add pytest; modified retriever

* add tests to build_on_pr.yml

* fix build_on_pr.yml

* fix build on pr; fix environ vars

* seperate unit tests for colossalqa from build from pr

* fix container setting; fix environ vars

* commented dev code

* add incremental update

* remove stale code

* fix style

* change to sha3 224

* fix retriever; fix style; add unit test for document loader

* fix ci workflow config

* fix ci workflow config

* add set cuda visible device script in ci

* fix doc string

* fix style; update readme; refactored

* add force log info

* change build on pr, ignore colossalqa

* fix docstring, captitalize all initial letters

* fix indexing; fix text-splitter

* remove debug code, update reference

* reset previous commit

* update LICENSE update README add key-value mode, fix bugs

* add files back

* revert force push

* remove junk file

* add test files

* fix retriever bug, add intent classification

* change conversation chain design

* rewrite prompt and conversation chain

* add ui v1

* ui v1

* fix atavar

* add header

* Refactor the RAG Code and support Pangu

* Refactor the ColossalQA chain to Object-Oriented Programming and the UI demo.

* resolved conversation. tested scripts under examples. web demo still buggy

* fix ci tests

* Some modifications to add ChatGPT api

* modify llm.py and remove unnecessary files

* Delete applications/ColossalQA/examples/ui/test_frontend_input.json

* Remove OpenAI api key

* add colossalqa

* move files

* move files

* move files

* move files

* fix style

* Add Readme and fix some bugs.

* Add something to readme and modify some code

* modify a directory name for clarity

* remove redundant directory

* Correct a type in  llm.py

* fix AI prefix

* fix test_memory.py

* fix conversation

* fix some erros and typos

* Fix a missing import in RAG_ChatBot.py

* add colossalcloud LLM wrapper, correct issues in code review

---------

Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Orion-Zheng <zheng_zian@u.nus.edu>
Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com>
Co-authored-by: Orion-Zheng <zhengzian@u.nus.edu>
2023-11-23 10:33:48 +08:00

103 lines
3.8 KiB
Python

import json
import os
import gradio as gr
import requests
RAG_STATE = {"conversation_ready": False, # Conversation is not ready until files are uploaded and RAG chain is initialized
"embed_model_name": os.environ.get("EMB_MODEL", "m3e"),
"llm_name": os.environ.get("CHAT_LLM", "chatgpt")}
URL = "http://localhost:13666"
def get_response(client_data, URL):
headers = {"Content-type": "application/json"}
print(f"Sending request to server url: {URL}")
response = requests.post(URL, data=json.dumps(client_data), headers=headers)
response = json.loads(response.content)
return response
def add_text(history, text):
history = history + [(text, None)]
return history, gr.update(value=None, interactive=True)
def add_file(history, files):
global RAG_STATE
RAG_STATE["conversation_ready"] = False # after adding new files, reset the ChatBot
RAG_STATE["upload_files"]=[file.name for file in files]
files_string = "\n".join([os.path.basename(path) for path in RAG_STATE["upload_files"]])
print(files_string)
history = history + [(files_string, None)]
return history
def bot(history):
print(history)
global RAG_STATE
if not RAG_STATE["conversation_ready"]:
# Upload files and initialize models
client_data = {
"docs": RAG_STATE["upload_files"],
"embed_model_name": RAG_STATE["embed_model_name"], # Select embedding model name here
"llm_name": RAG_STATE["llm_name"], # Select LLM model name here. ["pangu", "chatglm2"]
"conversation_ready": RAG_STATE["conversation_ready"]
}
else:
client_data = {}
client_data["conversation_ready"] = RAG_STATE["conversation_ready"]
client_data["user_input"] = history[-1][0].strip()
response = get_response(client_data, URL) # TODO: async request, to avoid users waiting the model initialization too long
print(response)
if response["error"] != "":
raise gr.Error(response["error"])
RAG_STATE["conversation_ready"] = response["conversation_ready"]
history[-1][1] = response["response"]
yield history
CSS = """
.contain { display: flex; flex-direction: column; height: 100vh }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; }
"""
header_html = """
<div style="background: linear-gradient(to right, #2a0cf4, #7100ed, #9800e6, #b600df, #ce00d9, #dc0cd1, #e81bca, #f229c3, #f738ba, #f946b2, #fb53ab, #fb5fa5); padding: 20px; text-align: left;">
<h1 style="color: white;">ColossalQA</h1>
<h4 style="color: white;">ColossalQA</h4>
</div>
"""
with gr.Blocks(css=CSS) as demo:
html = gr.HTML(header_html)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
avatar_images=(
(os.path.join(os.path.dirname(__file__), "img/avatar_user.png")),
(os.path.join(os.path.dirname(__file__), "img/avatar_ai.png")),
),
)
with gr.Row():
txt = gr.Textbox(
scale=4,
show_label=False,
placeholder="Enter text and press enter, or upload an image",
container=True,
autofocus=True,
)
btn = gr.UploadButton("📁", file_types=["file"], file_count="multiple")
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(bot, chatbot, chatbot)
# Clear the original textbox
txt_msg.then(lambda: gr.update(value=None, interactive=True), None, [txt], queue=False)
# Click Upload Button: 1. upload files 2. send config to backend, initalize model 3. get response "conversation_ready" = True/False
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(bot, chatbot, chatbot)
if __name__ == "__main__":
demo.queue()
demo.launch(share=True) # share=True will release a public link of the demo