mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-04-29 04:05:35 +00:00
* add langchain * add langchain * Add files via upload * add langchain * fix style * fix style: remove extra space * add pytest; modified retriever * add pytest; modified retriever * add tests to build_on_pr.yml * fix build_on_pr.yml * fix build on pr; fix environ vars * seperate unit tests for colossalqa from build from pr * fix container setting; fix environ vars * commented dev code * add incremental update * remove stale code * fix style * change to sha3 224 * fix retriever; fix style; add unit test for document loader * fix ci workflow config * fix ci workflow config * add set cuda visible device script in ci * fix doc string * fix style; update readme; refactored * add force log info * change build on pr, ignore colossalqa * fix docstring, captitalize all initial letters * fix indexing; fix text-splitter * remove debug code, update reference * reset previous commit * update LICENSE update README add key-value mode, fix bugs * add files back * revert force push * remove junk file * add test files * fix retriever bug, add intent classification * change conversation chain design * rewrite prompt and conversation chain * add ui v1 * ui v1 * fix atavar * add header * Refactor the RAG Code and support Pangu * Refactor the ColossalQA chain to Object-Oriented Programming and the UI demo. * resolved conversation. tested scripts under examples. web demo still buggy * fix ci tests * Some modifications to add ChatGPT api * modify llm.py and remove unnecessary files * Delete applications/ColossalQA/examples/ui/test_frontend_input.json * Remove OpenAI api key * add colossalqa * move files * move files * move files * move files * fix style * Add Readme and fix some bugs. * Add something to readme and modify some code * modify a directory name for clarity * remove redundant directory * Correct a type in llm.py * fix AI prefix * fix test_memory.py * fix conversation * fix some erros and typos * Fix a missing import in RAG_ChatBot.py * add colossalcloud LLM wrapper, correct issues in code review --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Orion-Zheng <zheng_zian@u.nus.edu> Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com> Co-authored-by: Orion-Zheng <zhengzian@u.nus.edu>
103 lines
3.8 KiB
Python
103 lines
3.8 KiB
Python
import json
|
|
import os
|
|
import gradio as gr
|
|
import requests
|
|
|
|
RAG_STATE = {"conversation_ready": False, # Conversation is not ready until files are uploaded and RAG chain is initialized
|
|
"embed_model_name": os.environ.get("EMB_MODEL", "m3e"),
|
|
"llm_name": os.environ.get("CHAT_LLM", "chatgpt")}
|
|
URL = "http://localhost:13666"
|
|
|
|
def get_response(client_data, URL):
|
|
headers = {"Content-type": "application/json"}
|
|
print(f"Sending request to server url: {URL}")
|
|
response = requests.post(URL, data=json.dumps(client_data), headers=headers)
|
|
response = json.loads(response.content)
|
|
return response
|
|
|
|
def add_text(history, text):
|
|
history = history + [(text, None)]
|
|
return history, gr.update(value=None, interactive=True)
|
|
|
|
def add_file(history, files):
|
|
global RAG_STATE
|
|
RAG_STATE["conversation_ready"] = False # after adding new files, reset the ChatBot
|
|
RAG_STATE["upload_files"]=[file.name for file in files]
|
|
files_string = "\n".join([os.path.basename(path) for path in RAG_STATE["upload_files"]])
|
|
print(files_string)
|
|
history = history + [(files_string, None)]
|
|
return history
|
|
|
|
def bot(history):
|
|
print(history)
|
|
global RAG_STATE
|
|
if not RAG_STATE["conversation_ready"]:
|
|
# Upload files and initialize models
|
|
client_data = {
|
|
"docs": RAG_STATE["upload_files"],
|
|
"embed_model_name": RAG_STATE["embed_model_name"], # Select embedding model name here
|
|
"llm_name": RAG_STATE["llm_name"], # Select LLM model name here. ["pangu", "chatglm2"]
|
|
"conversation_ready": RAG_STATE["conversation_ready"]
|
|
}
|
|
else:
|
|
client_data = {}
|
|
client_data["conversation_ready"] = RAG_STATE["conversation_ready"]
|
|
client_data["user_input"] = history[-1][0].strip()
|
|
|
|
response = get_response(client_data, URL) # TODO: async request, to avoid users waiting the model initialization too long
|
|
print(response)
|
|
if response["error"] != "":
|
|
raise gr.Error(response["error"])
|
|
|
|
RAG_STATE["conversation_ready"] = response["conversation_ready"]
|
|
history[-1][1] = response["response"]
|
|
yield history
|
|
|
|
|
|
CSS = """
|
|
.contain { display: flex; flex-direction: column; height: 100vh }
|
|
#component-0 { height: 100%; }
|
|
#chatbot { flex-grow: 1; }
|
|
"""
|
|
|
|
header_html = """
|
|
<div style="background: linear-gradient(to right, #2a0cf4, #7100ed, #9800e6, #b600df, #ce00d9, #dc0cd1, #e81bca, #f229c3, #f738ba, #f946b2, #fb53ab, #fb5fa5); padding: 20px; text-align: left;">
|
|
<h1 style="color: white;">ColossalQA</h1>
|
|
<h4 style="color: white;">ColossalQA</h4>
|
|
</div>
|
|
"""
|
|
|
|
with gr.Blocks(css=CSS) as demo:
|
|
html = gr.HTML(header_html)
|
|
chatbot = gr.Chatbot(
|
|
[],
|
|
elem_id="chatbot",
|
|
bubble_full_width=False,
|
|
avatar_images=(
|
|
(os.path.join(os.path.dirname(__file__), "img/avatar_user.png")),
|
|
(os.path.join(os.path.dirname(__file__), "img/avatar_ai.png")),
|
|
),
|
|
)
|
|
|
|
with gr.Row():
|
|
txt = gr.Textbox(
|
|
scale=4,
|
|
show_label=False,
|
|
placeholder="Enter text and press enter, or upload an image",
|
|
container=True,
|
|
autofocus=True,
|
|
)
|
|
btn = gr.UploadButton("📁", file_types=["file"], file_count="multiple")
|
|
|
|
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(bot, chatbot, chatbot)
|
|
# Clear the original textbox
|
|
txt_msg.then(lambda: gr.update(value=None, interactive=True), None, [txt], queue=False)
|
|
# Click Upload Button: 1. upload files 2. send config to backend, initalize model 3. get response "conversation_ready" = True/False
|
|
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(bot, chatbot, chatbot)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo.queue()
|
|
demo.launch(share=True) # share=True will release a public link of the demo
|