ColossalAI/tests/kit/model_zoo/transformers/mistral.py
Wang Binluo 0d0a582033
[shardformer] update transformers (#5583)
* flash_attention forward upgrade

* llama_model_forward

* remove useless comment

* update the requirements.txt

* add the transformers version requirements

* remove the LATEST VERSION try

* [shardformer] update bloom model (#5518)

* update bloom model

* remove the version restriction

* [shardformer] update_falcon (#5520)

* [shardformer] update mistral model (#5511)

* [shardformer] update gpt2 (#5502)

* [shardformer] update gptj model (#5503)

* [shardformer] update opt (#5522)

* [shardformer] update t5 model (#5524)

* [shardformer] update whisper model (#5529)

* [shardformer] update vit model (#5530)

* update vit model

* remove the output_hidden_states

* [shardformer] fix llama modeling

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [zero] support multiple (partial) backward passes (#5596)

* [zero] support multiple (partial) backward passes

* [misc] update requirements

* [zero] support multiple (partial) backward passes (#5596)

* [zero] support multiple (partial) backward passes

* [misc] update requirements

* fix conflicts

* [doc] fix ColossalMoE readme (#5599)

* fix readme

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* merge with main

* merge with main

* llama_model_forward

* remove useless comment

* remove the LATEST VERSION try

* [shardformer] update bloom model (#5518)

* update bloom model

* remove the version restriction

* [shardformer] update mistral model (#5511)

* [shardformer] update opt (#5522)

* [shardformer] update whisper model (#5529)

* [shardformer] fix llama modeling

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606)

* fix no pad token bug

* fixed some auto parallel codegen bug, but might not run on torch 2.1

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [shardformer] fix pipeline grad ckpt (#5620)

* [shardformer] fix pipeline grad ckpt

* [shardformer] fix whisper (#5628)

* [test] fix llama model test

* fix the opt upgrade (#5634)

* [shardformer] fix attn replacement (#5636)

* [shardformer] update flashattention replacement (#5637)

* update transformers

update transformers

fix

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [test] fix llama test (#5638)

* [gemini] fix buffer cast (#5639)

* Fix shardformer upgrade (#5640)

* fix llama model

* fix the mistral

* fix the shardformer model

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [shardformer]support pipeline parallelism for mistral. (#5642)

* [shardformer] fix attn replacement (#5636)

* [shardformer] update flashattention replacement (#5637)

* update transformers

update transformers

fix

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] Support LLaMA-3 CPT and ST (#5619)

* support LLaMA-3

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Run pre-commit

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [exampe] update llama example (#5626)

* [plugin] support dp inside for hybriad parallel

* [example] update llama benchmark

* [example] update llama benchmark

* [example] update llama readme

* [example] update llama readme

* [example] llama3 (#5631)

* release llama3

* [release] llama3

* [release] llama3

* [release] llama3

* [release] llama3

* [test] fix llama test (#5638)

* [gemini] fix buffer cast (#5639)

* support pp for mistral

* fix

* fix

fix

fix

* fix

---------

Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>

---------

Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
2024-04-24 22:51:50 +08:00

82 lines
2.8 KiB
Python

import torch
import transformers
from transformers import MistralConfig
from ..registry import ModelAttribute, model_zoo
# ===============================
# Register single-sentence Mistral
# ===============================
def data_gen():
# Generated from following code snippet
#
# from transformers import AutoModelForCausalLM, AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
# input = 'My favourite condiment is vinegar' (last two words repeated to satisfy length requirement)
# tokenized_input = tokenizer([input], return_tensors="pt")
# input_ids = tokenized_input['input_ids']
# attention_mask = tokenized_input['attention_mask']
input_ids = torch.tensor([[1, 1984, 16020, 2076, 2487, 349, 21375, 4749]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def data_gen_for_lm():
# LM data gen
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
data = data_gen()
data["labels"] = data["input_ids"].clone()
return data
def data_gen_for_sequence_classification():
# sequence classification data gen
data = data_gen()
data["labels"] = torch.tensor([1], dtype=torch.int64)
return data
# define output transform function
output_transform_fn = lambda x: x
# define loss function
loss_fn_for_mistral_model = lambda x: torch.nn.functional.mse_loss(
x.last_hidden_state, torch.ones_like(x.last_hidden_state)
)
loss_fn = lambda x: x.loss
loss_fn_for_seq_classification = lambda output: output.logits.mean()
config = MistralConfig(
hidden_size=256, intermediate_size=256, num_attention_heads=64, num_hidden_layers=2, vocab_size=50258
)
if hasattr(config, "pad_token_id"):
config.pad_token_id = config.eos_token_id
model_zoo.register(
name="transformers_mistral",
model_fn=lambda: transformers.MistralModel(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_mistral_model,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_mistral_for_casual_lm",
model_fn=lambda: transformers.MistralForCausalLM(config),
data_gen_fn=data_gen_for_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_mistral_for_sequence_classification",
model_fn=lambda: transformers.MistralForSequenceClassification(config),
data_gen_fn=data_gen_for_sequence_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_seq_classification,
model_attribute=ModelAttribute(has_control_flow=True),
)