mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-04-27 11:31:58 +00:00
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686
.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* Support overall loss, update KTO logging
* [Docs] clarify launch port
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Hotfix] README link (#5966)
* update ignore
* update readme
* run style
* update readme
* [Hotfix] Avoid fused RMSnorm import error without apex (#5985)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Chat] fix readme (#5989)
* fix readme
* fix readme, tokenization fully tested
* fix readme, tokenization fully tested
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix sync condition (#6000)
* [plugin] add cast inputs option for zero (#6003)
* [pre-commit.ci] pre-commit autoupdate (#5995)
updates:
- [github.com/psf/black-pre-commit-mirror: 24.4.2 → 24.8.0](https://github.com/psf/black-pre-commit-mirror/compare/24.4.2...24.8.0)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [misc] Bypass the huggingface bug to solve the mask mismatch problem (#5991)
* [Feature] Zigzag Ring attention (#5905)
* halfway
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* unified cross entropy func for all shardformer models
* remove redundant lines
* add basic ring attn; debug cross entropy
* fwd bwd logic complete
* fwd bwd logic complete; add experimental triton rescale
* precision tests passed
* precision tests passed
* fix typos and remove misc files
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* add sp_mode to benchmark; fix varlen interface
* update softmax_lse shape by new interface
* change tester name
* remove buffer clone; support packed seq layout
* add varlen tests
* fix typo
* all tests passed
* add dkv_group; fix mask
* remove debug statements
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [misc] update compatibility (#6008)
* [misc] update compatibility
* [misc] update requirements
* [devops] disable requirements cache
* [test] fix torch ddp test
* [test] fix rerun on address in use
* [test] fix lazy init
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix the merge
* overlap kv comm with output rescale (#6017)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* fix the merge
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix
* fix
* fix the merge
* fix
* [misc] Use dist logger in plugins (#6011)
* use dist logger in plugins
* remove trash
* print on rank 0
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* fix
* fix
* fix
* fix
* fix the merge
* fix
* fix
* fix
* fix
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
247 lines
9.7 KiB
Python
247 lines
9.7 KiB
Python
import torch
|
|
import torch.distributed as dist
|
|
from torch.autograd import Function
|
|
from torch.distributed import ProcessGroup
|
|
from torch.nn import CrossEntropyLoss
|
|
|
|
from colossalai.shardformer.layer._operation import reduce_forward
|
|
from colossalai.shardformer.shard import ShardConfig
|
|
|
|
from .utils import is_share_sp_tp
|
|
|
|
__all__ = ["DistCrossEntropy", "cross_entropy_1d", "dist_cross_entropy"]
|
|
|
|
_IGNORE_IDX = -100
|
|
|
|
|
|
class DistCrossEntropy(Function):
|
|
r"""
|
|
Overwrite the forward and backward function to calculate the cross entropy loss before gather
|
|
|
|
Args:
|
|
Function (:class:`torch.autograd.Function`): default
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(
|
|
ctx,
|
|
vocab_logits: torch.Tensor,
|
|
target: torch.Tensor,
|
|
ignore_index: int,
|
|
process_group: ProcessGroup,
|
|
vocab_size: int,
|
|
dtype=torch.float32,
|
|
mode="mean",
|
|
):
|
|
r"""
|
|
Calculate the cross entropy loss before gather, the origin loss function is as follows:
|
|
loss = -log(exp(x[class])/sum(exp(x[i]))
|
|
and can be rewriten as:
|
|
loss = log(sum(exp(x[i])) - x[class]
|
|
|
|
To avoid the `nan` of log(sum(exp(x[i]))), we minus the max of x[i]
|
|
|
|
Args:
|
|
vocab_logits (:class:`torch.Tensor`): The logits of the vocabulary, shape is
|
|
[batch_size, seq_len, vocab_size]
|
|
target (:class:`torch.Tensor`): The labels of the vocabulary, shape is
|
|
[batch_size, seq_len]
|
|
|
|
Returns:
|
|
:class:`torch.Tensor`: The cross entropy loss
|
|
"""
|
|
assert mode in ["mean", "sum"]
|
|
# get the max
|
|
logits_max = torch.max(vocab_logits, dim=-1)[0]
|
|
handle = dist.all_reduce(logits_max, op=dist.ReduceOp.MAX, group=process_group, async_op=True)
|
|
|
|
# mask the target in the local device
|
|
rank = dist.get_rank(group=process_group)
|
|
world_size = dist.get_world_size(group=process_group)
|
|
if vocab_size == None:
|
|
partition_vocab_size = vocab_logits.size()[-1]
|
|
global_vocab_size = partition_vocab_size * world_size
|
|
else:
|
|
global_vocab_size = vocab_size
|
|
partition_vocab_size = global_vocab_size // world_size
|
|
|
|
# [down, up) => false, other device and -100 => true
|
|
delta = (global_vocab_size + world_size - 1) // world_size
|
|
down_threshold = rank * delta
|
|
up_threshold = down_threshold + delta
|
|
if up_threshold > global_vocab_size:
|
|
up_threshold = global_vocab_size
|
|
mask = (target < down_threshold) | (target >= up_threshold)
|
|
masked_target = target.clone() - down_threshold
|
|
masked_target[mask] = 0
|
|
masked_target_1d = masked_target.view(-1).contiguous()
|
|
|
|
# minus the max to avoid the result of sum of exp is too large and the log is nan
|
|
handle.wait()
|
|
vocab_logits = vocab_logits - logits_max.unsqueeze(dim=-1)
|
|
# reshape the logits and target
|
|
# reshape the vocab_logits to [bath_size * seq_len, vocab_size]
|
|
# reshape the labels to [bath_size * seq_len]
|
|
self_vocab_size = vocab_logits.size()[-1]
|
|
logits_2d = vocab_logits.view(-1, self_vocab_size)
|
|
|
|
# extract the x[class] and set the x[other device] to zero
|
|
idx = torch.arange(start=0, end=logits_2d.shape[0], device=logits_2d.device)
|
|
pred_logits_1d = logits_2d[idx, masked_target_1d].contiguous()
|
|
pred_logits = pred_logits_1d.view_as(target)
|
|
pred_logits[mask] = 0.0
|
|
|
|
# all-reduce to get full x[i, y]
|
|
handle = dist.all_reduce(pred_logits, op=dist.ReduceOp.SUM, group=process_group, async_op=True)
|
|
exp_logits = vocab_logits
|
|
torch.exp(vocab_logits, out=exp_logits)
|
|
sum_exp_logits = torch.sum(exp_logits, dim=-1, dtype=torch.float32)
|
|
dist.all_reduce(sum_exp_logits, op=dist.ReduceOp.SUM, group=process_group)
|
|
|
|
# calculate the loss
|
|
# loss = log(sum(exp(x[i]))) - x[class]
|
|
handle.wait()
|
|
loss = torch.where(target == ignore_index, 0.0, torch.log(sum_exp_logits) - pred_logits)
|
|
if mode == "mean":
|
|
num_non_zero = torch.sum(loss != 0.0)
|
|
ctx.inv_num_non_zero = 1.0 / num_non_zero
|
|
loss = torch.sum(loss).div_(num_non_zero)
|
|
else:
|
|
loss = torch.sum(loss)
|
|
|
|
# calculate the softmax
|
|
exp_logits = exp_logits.div(sum_exp_logits.unsqueeze(dim=-1)).to(dtype)
|
|
exp_logits[target == ignore_index] = 0.0
|
|
ctx.save_for_backward(exp_logits, mask, masked_target_1d)
|
|
ctx.dtype = dtype
|
|
ctx.mode = mode
|
|
|
|
return loss
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
# retrieve the saved tensors
|
|
if ctx.mode == "mean":
|
|
grad_output = grad_output * ctx.inv_num_non_zero
|
|
exp_logits, mask, masked_target_1d = ctx.saved_tensors
|
|
|
|
# use exp logits as the input grad
|
|
grad_logits = exp_logits
|
|
partion_vocab_size = grad_logits.shape[-1]
|
|
grad_logits_2d = grad_logits.view(-1, partion_vocab_size)
|
|
|
|
update = 1.0 - mask.view(-1).float().to(ctx.dtype)
|
|
grad_logits_2d[torch.arange(0, grad_logits_2d.shape[0]), masked_target_1d] -= update
|
|
|
|
grad_logits.mul_(grad_output.unsqueeze(dim=-1))
|
|
return grad_logits, None, None, None, None, None, None
|
|
|
|
|
|
def cross_entropy_1d(
|
|
vocab_logits: torch.Tensor,
|
|
labels: torch.Tensor,
|
|
ignore_index: int = _IGNORE_IDX,
|
|
process_group: ProcessGroup = None,
|
|
vocab_size: int = None,
|
|
dtype: torch.dtype = None,
|
|
mode: str = "mean",
|
|
) -> torch.Tensor:
|
|
return DistCrossEntropy.apply(vocab_logits, labels, ignore_index, process_group, vocab_size, dtype, mode)
|
|
|
|
|
|
def dist_cross_entropy(
|
|
labels: torch.Tensor, # [B, S] or [B, S, Vocab_size]
|
|
logits: torch.Tensor, # [B, S, Vocab_size]
|
|
shard_config: ShardConfig,
|
|
out_features: int,
|
|
vocab_size: int,
|
|
dtype: torch.dtype,
|
|
seq_dim: int = 1,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Helper to compute cross entropy loss for most shardformer models supporting PP, TP and SP.
|
|
"""
|
|
# Split labels if not gather output
|
|
sp_group = shard_config.sequence_parallel_process_group
|
|
sp_rank = dist.get_rank(sp_group)
|
|
sp_size = shard_config.sequence_parallel_size
|
|
sp_mode = shard_config.sequence_parallelism_mode
|
|
parallel_output = shard_config.parallel_output
|
|
is_tp = shard_config.enable_tensor_parallelism
|
|
is_packed = labels.dim() == 2
|
|
if is_packed:
|
|
bs, seq_len = labels.shape
|
|
else:
|
|
# padded sequence
|
|
seq_len = labels.shape[-1]
|
|
logits = logits.reshape(-1, *logits.shape[2:])
|
|
seq_dim = 0
|
|
|
|
# Shift labels to predict the next token, and remove the tail logit predicting <EOS>
|
|
is_sp = sp_size > 1 and (not is_share_sp_tp(sp_mode))
|
|
split_labels_here = seq_len // sp_size == logits.size(seq_dim) # ring attn splits labels before forward
|
|
|
|
if sp_mode == "ring_attn":
|
|
# For Zigzag Ring Attention, labels should've been split and
|
|
# shifted by RingAttention.prepare_varlen_batch()
|
|
if sp_rank == 0:
|
|
logits = logits[..., :-1, :]
|
|
logits = torch.cat([logits, torch.full_like(logits[:, :1, :], _IGNORE_IDX)], dim=seq_dim)
|
|
elif is_sp:
|
|
# Shift only once: either before splitting or in the last rank without splitting
|
|
if split_labels_here or (sp_rank == sp_size - 1):
|
|
labels = labels[..., 1:]
|
|
if split_labels_here:
|
|
labels = labels.split(seq_len // sp_size, dim=-1)[sp_rank]
|
|
|
|
if sp_rank == sp_size - 1:
|
|
logits = logits[..., :-1, :]
|
|
# Pad logits and labels to the same shape across all ranks for TP all_reduce
|
|
if is_tp and parallel_output:
|
|
# If is packed sequence (label dim is 1), then each seq already has the end label token padded.
|
|
# torch.cat is faster than F.pad...
|
|
pad_shape = (logits.shape[0], 1, *logits.shape[2:]) if is_packed else (1, *logits.shape[1:])
|
|
padding = torch.full(pad_shape, _IGNORE_IDX, dtype=logits.dtype, device=logits.device)
|
|
logits = torch.cat([logits, padding], dim=seq_dim)
|
|
pad_shape = (labels.shape[0], 1) if is_packed else (1,)
|
|
padding = torch.full(pad_shape, _IGNORE_IDX, dtype=labels.dtype, device=labels.device)
|
|
labels = torch.cat([labels, padding], dim=seq_dim)
|
|
else:
|
|
labels = labels[..., 1:]
|
|
logits = logits[..., :-1, :]
|
|
labels = labels.contiguous()
|
|
logits = logits.contiguous()
|
|
num_nonzero = (labels != _IGNORE_IDX).sum()
|
|
assert labels.shape == logits.shape[:-1], f"label shape {labels.shape} does not match logit shape {logits.shape}"
|
|
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss(ignore_index=_IGNORE_IDX, reduction="sum")
|
|
labels = labels.view(-1)
|
|
|
|
if is_tp and parallel_output:
|
|
# Cross entropy with all-reduce for TP
|
|
new_vocab_size = logits.shape[-1]
|
|
logits = logits.view(-1, new_vocab_size)
|
|
loss = cross_entropy_1d(
|
|
logits,
|
|
labels,
|
|
process_group=shard_config.tensor_parallel_process_group,
|
|
vocab_size=out_features,
|
|
dtype=dtype,
|
|
mode="sum",
|
|
)
|
|
else:
|
|
# NOTE if use TP and not parallel_output, the output is gathered in VocabParallelLMHead1D
|
|
logits = logits.view(-1, vocab_size)
|
|
loss = loss_fct(logits, labels)
|
|
|
|
# Reduce loss instead of gathering logits over seq dim for savings
|
|
if split_labels_here or sp_mode == "ring_attn":
|
|
# Get the global non-zero count
|
|
loss = torch.stack((loss, num_nonzero))
|
|
# Rescale to offset the grad / (DP * SP) in HybridParallelPlugin
|
|
loss = reduce_forward(loss, sp_group, grad_scale=sp_size)
|
|
loss, num_nonzero = loss[0], loss[1].detach()
|
|
loss = (loss / num_nonzero).squeeze()
|
|
return loss
|