mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-04-27 11:31:58 +00:00
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686
.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* Support overall loss, update KTO logging
* [Docs] clarify launch port
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Hotfix] README link (#5966)
* update ignore
* update readme
* run style
* update readme
* [Hotfix] Avoid fused RMSnorm import error without apex (#5985)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Chat] fix readme (#5989)
* fix readme
* fix readme, tokenization fully tested
* fix readme, tokenization fully tested
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix sync condition (#6000)
* [plugin] add cast inputs option for zero (#6003)
* [pre-commit.ci] pre-commit autoupdate (#5995)
updates:
- [github.com/psf/black-pre-commit-mirror: 24.4.2 → 24.8.0](https://github.com/psf/black-pre-commit-mirror/compare/24.4.2...24.8.0)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [misc] Bypass the huggingface bug to solve the mask mismatch problem (#5991)
* [Feature] Zigzag Ring attention (#5905)
* halfway
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* unified cross entropy func for all shardformer models
* remove redundant lines
* add basic ring attn; debug cross entropy
* fwd bwd logic complete
* fwd bwd logic complete; add experimental triton rescale
* precision tests passed
* precision tests passed
* fix typos and remove misc files
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* add sp_mode to benchmark; fix varlen interface
* update softmax_lse shape by new interface
* change tester name
* remove buffer clone; support packed seq layout
* add varlen tests
* fix typo
* all tests passed
* add dkv_group; fix mask
* remove debug statements
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [misc] update compatibility (#6008)
* [misc] update compatibility
* [misc] update requirements
* [devops] disable requirements cache
* [test] fix torch ddp test
* [test] fix rerun on address in use
* [test] fix lazy init
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix the merge
* overlap kv comm with output rescale (#6017)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* fix the merge
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix
* fix
* fix the merge
* fix
* [misc] Use dist logger in plugins (#6011)
* use dist logger in plugins
* remove trash
* print on rank 0
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* fix
* fix
* fix
* fix
* fix the merge
* fix
* fix
* fix
* fix
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
303 lines
11 KiB
Python
303 lines
11 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
import warnings
|
|
from abc import ABC, abstractmethod
|
|
|
|
import torch.nn as nn
|
|
|
|
from colossalai.lazy import LazyInitContext
|
|
|
|
from ._operation import hook_parameter_in_backward
|
|
from .utils import SeqParallelUtils
|
|
|
|
__all__ = ["FusedLayerNorm", "FusedRMSNorm", "LayerNorm", "RMSNorm", "BaseLayerNorm"]
|
|
|
|
try:
|
|
from apex.contrib.layer_norm.layer_norm import FastLayerNorm
|
|
|
|
EnableFastLayerNorm = True
|
|
except ImportError:
|
|
EnableFastLayerNorm = False
|
|
|
|
try:
|
|
from apex.normalization import FusedLayerNorm as ApexFusedLayerNorm
|
|
from apex.normalization import FusedRMSNorm as ApexFusedRMSNorm
|
|
|
|
class FusedLayerNormWithHook(ApexFusedLayerNorm):
|
|
def __init__(self, normalized_shape, eps=0.00001, elementwise_affine=True):
|
|
super().__init__(normalized_shape, eps, elementwise_affine)
|
|
|
|
def forward(self, input):
|
|
output = super().forward(input)
|
|
output = hook_parameter_in_backward(output, self.weight, self.bias)
|
|
return output
|
|
|
|
class FusedRMSNormWithHook(ApexFusedRMSNorm):
|
|
def __init__(self, normalized_shape, eps=0.00001, elementwise_affine=True):
|
|
super().__init__(normalized_shape, eps, elementwise_affine)
|
|
|
|
def forward(self, input):
|
|
output = super().forward(input)
|
|
output = hook_parameter_in_backward(output, self.weight)
|
|
return output
|
|
|
|
except ImportError:
|
|
warnings.warn("Please install apex from source (https://github.com/NVIDIA/apex) to use the fused RMSNorm kernel")
|
|
|
|
FAST_LAYERNORM_SUPPORTED_SIZE = [
|
|
1024,
|
|
1536,
|
|
2048,
|
|
2304,
|
|
3072,
|
|
3840,
|
|
4096,
|
|
5120,
|
|
6144,
|
|
8192,
|
|
10240,
|
|
12288,
|
|
12800,
|
|
15360,
|
|
16384,
|
|
18432,
|
|
20480,
|
|
24576,
|
|
25600,
|
|
30720,
|
|
32768,
|
|
40960,
|
|
49152,
|
|
65536,
|
|
]
|
|
|
|
if EnableFastLayerNorm:
|
|
|
|
class FastLayerNormWithHook(FastLayerNorm):
|
|
def __init__(self, hidden_size, eps=0.00001):
|
|
super().__init__(hidden_size, eps)
|
|
|
|
def forward(self, input):
|
|
output = super().forward(input)
|
|
output = hook_parameter_in_backward(output, self.weight, self.bias)
|
|
return output
|
|
|
|
|
|
class BaseLayerNorm(ABC):
|
|
@abstractmethod
|
|
def from_native_module(module: nn.Module, sp_partial_derived: bool = False):
|
|
"""
|
|
Convert a native PyTorch layer normalization module to a specific layer normalization module,
|
|
and optionally mark parameters for gradient aggregation.
|
|
|
|
Args:
|
|
module (nn.Module): The native PyTorch layer normalization module to be converted.
|
|
sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism.
|
|
|
|
Returns:
|
|
nn.Module: The specific layer normalization module.
|
|
|
|
Raises:
|
|
AssertionError: If the provided module is not an instance of the supported layer normalization type.
|
|
"""
|
|
|
|
|
|
class RMSNorm(BaseLayerNorm):
|
|
r"""
|
|
This is a wrapper around the RMSNorm. It is meant to be used only with the from_native_module interface.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
raise NotImplementedError(
|
|
"FusedLayerNorm is not implemented as a physical class. "
|
|
"It is meant to be used only with the from_native_module interface to convert a native RMSNorm module to colossalai layer norm module."
|
|
)
|
|
|
|
@staticmethod
|
|
def from_native_module(module: nn.Module, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module:
|
|
"""
|
|
Convert a native RMSNorm module to colossalai layer norm module,
|
|
and optionally mark parameters for gradient aggregation.
|
|
|
|
Args:
|
|
module (nn.Module): The native RMSNorm module to be converted.
|
|
sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism.
|
|
|
|
Returns:
|
|
nn.Module: The RMSNorm module.
|
|
"""
|
|
|
|
LazyInitContext.materialize(module)
|
|
|
|
if sp_partial_derived:
|
|
# Since gradients are computed using only a subset of the data,
|
|
# aggregation of these gradients is necessary during backpropagation.
|
|
# Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation.
|
|
SeqParallelUtils.marked_as_sp_partial_derived_param(module.weight)
|
|
|
|
return module
|
|
|
|
|
|
class LayerNorm(BaseLayerNorm):
|
|
r"""
|
|
This is a wrapper around native LayerNorm. It is meant to be used only with the from_native_module interface.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
raise NotImplementedError(
|
|
"LayerNorm is not implemented as a physical class. "
|
|
"It is meant to be used only with the from_native_module interface to convert a native LayerNorm module to colossalai layer norm module."
|
|
)
|
|
|
|
@staticmethod
|
|
def from_native_module(module: nn.Module, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module:
|
|
r"""
|
|
Convert a native LayerNorm module to colossalai layer norm module,
|
|
and optionally marking parameters for gradient aggregation.
|
|
|
|
Args:
|
|
module (nn.Module): The native LayerNorm module to be converted.
|
|
sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism.
|
|
|
|
Returns:
|
|
nn.Module: The colossalai LayerNorm module.
|
|
|
|
"""
|
|
|
|
LazyInitContext.materialize(module)
|
|
|
|
if sp_partial_derived:
|
|
# Since gradients are computed using only a subset of the data,
|
|
# aggregation of these gradients is necessary during backpropagation.
|
|
# Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation.
|
|
SeqParallelUtils.marked_as_sp_partial_derived_param(module.weight)
|
|
if module.bias is not None:
|
|
SeqParallelUtils.marked_as_sp_partial_derived_param(module.bias)
|
|
|
|
return module
|
|
|
|
|
|
class FusedLayerNorm(BaseLayerNorm):
|
|
r"""
|
|
This is a wrapper around the apex fused layernorm implementation. It is meant to be used only with the from_native_module interface.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
raise NotImplementedError(
|
|
"FusedLayerNorm is not implemented as a physical class. "
|
|
"It is meant to be used only with the from_native_module interface convert a native LayerNorm module to FusedLayerNorm module provided by apex."
|
|
)
|
|
|
|
@staticmethod
|
|
def from_native_module(module: nn.LayerNorm, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module:
|
|
r"""
|
|
Convert a native LayerNorm module to FusedLayerNorm module provided by apex,
|
|
and optionally marking parameters for gradient aggregation.
|
|
|
|
Args:
|
|
module (nn.Module): The native LayerNorm module to be converted.
|
|
sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism.
|
|
|
|
Returns:
|
|
nn.Module: Union[FastLayerNorm, FusedLayerNorm].
|
|
|
|
"""
|
|
|
|
LazyInitContext.materialize(module)
|
|
# get the attributes of the module
|
|
normalized_shape = getattr(module, "normalized_shape", module.weight.shape[0])
|
|
eps = module.variance_epsilon if hasattr(module, "variance_epsilon") else module.eps
|
|
elementwise_affine = getattr(module, "elementwise_affine", True)
|
|
dtype = module.weight.dtype
|
|
device = module.weight.device
|
|
|
|
# pick the suitable layernorm implementation
|
|
use_fast_ln = normalized_shape in FAST_LAYERNORM_SUPPORTED_SIZE
|
|
|
|
if use_fast_ln:
|
|
if EnableFastLayerNorm:
|
|
ApexFusedLayerNorm = FastLayerNormWithHook
|
|
else:
|
|
# fall back to the normal fused layernorm is not built
|
|
ApexFusedLayerNorm = FusedLayerNormWithHook
|
|
else:
|
|
try:
|
|
ApexFusedLayerNorm = FusedLayerNormWithHook
|
|
except NameError:
|
|
warnings.warn(
|
|
"Please install Apex from source to use fused kernels, or set self.enable_fused_normalization = False. Using native layernorm instead."
|
|
)
|
|
return module
|
|
|
|
layernorm = (
|
|
ApexFusedLayerNorm(normalized_shape, eps=eps, elementwise_affine=elementwise_affine).to(dtype).to(device)
|
|
)
|
|
layernorm.weight = module.weight
|
|
if module.bias is not None:
|
|
layernorm.bias = module.bias
|
|
|
|
if sp_partial_derived:
|
|
# Since gradients are computed using only a subset of the data,
|
|
# aggregation of these gradients is necessary during backpropagation.
|
|
# Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation.
|
|
SeqParallelUtils.marked_as_sp_partial_derived_param(layernorm.weight)
|
|
SeqParallelUtils.marked_as_sp_partial_derived_param(layernorm.bias)
|
|
|
|
return layernorm
|
|
|
|
|
|
class FusedRMSNorm(BaseLayerNorm):
|
|
"""
|
|
This is a wrapper around the apex fused rms norm implementation. It is meant to be used only with the from_native_module interface.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
raise NotImplementedError(
|
|
"FusedRMSNorm is not implemented as a physical class. "
|
|
"It is meant to be used only with the from_native_module interface to Convert a native RMSNorm module to FusedRMSNorm module provided by apex."
|
|
)
|
|
|
|
@staticmethod
|
|
def from_native_module(module: nn.Module, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module:
|
|
r"""
|
|
Convert a native RMSNorm module module to FusedRMSNorm module provided by apex,
|
|
and optionally marking parameters for gradient aggregation.
|
|
|
|
Args:
|
|
module (nn.LayerNorm): The native PyTorch LayerNorm module to be converted.
|
|
sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism.
|
|
|
|
Returns:
|
|
nn.Module: FusedRMSNorm module.
|
|
"""
|
|
|
|
LazyInitContext.materialize(module)
|
|
|
|
# try to get normalized_shape, eps, elementwise_affine from the module
|
|
normalized_shape = getattr(module, "normalized_shape", module.weight.shape[0])
|
|
eps = module.variance_epsilon if hasattr(module, "variance_epsilon") else module.eps
|
|
elementwise_affine = getattr(module, "elementwise_affine", True)
|
|
|
|
try:
|
|
rmsnorm = FusedRMSNormWithHook(
|
|
normalized_shape=normalized_shape,
|
|
eps=eps,
|
|
elementwise_affine=elementwise_affine,
|
|
)
|
|
except ImportError:
|
|
warnings.warn(
|
|
"Module replacement failed.\
|
|
Please install apex from source (https://github.com/NVIDIA/apex) to use the fused RMS normalization kernel"
|
|
)
|
|
return module
|
|
|
|
rmsnorm.weight = module.weight
|
|
|
|
if sp_partial_derived:
|
|
# Since gradients are computed using only a subset of the data,
|
|
# aggregation of these gradients is necessary during backpropagation.
|
|
# Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation.
|
|
SeqParallelUtils.marked_as_sp_partial_derived_param(rmsnorm.weight)
|
|
|
|
return rmsnorm
|