mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-04-27 19:36:13 +00:00
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686
.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* Support overall loss, update KTO logging
* [Docs] clarify launch port
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Hotfix] README link (#5966)
* update ignore
* update readme
* run style
* update readme
* [Hotfix] Avoid fused RMSnorm import error without apex (#5985)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Chat] fix readme (#5989)
* fix readme
* fix readme, tokenization fully tested
* fix readme, tokenization fully tested
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix sync condition (#6000)
* [plugin] add cast inputs option for zero (#6003)
* [pre-commit.ci] pre-commit autoupdate (#5995)
updates:
- [github.com/psf/black-pre-commit-mirror: 24.4.2 → 24.8.0](https://github.com/psf/black-pre-commit-mirror/compare/24.4.2...24.8.0)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [misc] Bypass the huggingface bug to solve the mask mismatch problem (#5991)
* [Feature] Zigzag Ring attention (#5905)
* halfway
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* unified cross entropy func for all shardformer models
* remove redundant lines
* add basic ring attn; debug cross entropy
* fwd bwd logic complete
* fwd bwd logic complete; add experimental triton rescale
* precision tests passed
* precision tests passed
* fix typos and remove misc files
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* add sp_mode to benchmark; fix varlen interface
* update softmax_lse shape by new interface
* change tester name
* remove buffer clone; support packed seq layout
* add varlen tests
* fix typo
* all tests passed
* add dkv_group; fix mask
* remove debug statements
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [misc] update compatibility (#6008)
* [misc] update compatibility
* [misc] update requirements
* [devops] disable requirements cache
* [test] fix torch ddp test
* [test] fix rerun on address in use
* [test] fix lazy init
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix the merge
* overlap kv comm with output rescale (#6017)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* fix the merge
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix
* fix
* fix the merge
* fix
* [misc] Use dist logger in plugins (#6011)
* use dist logger in plugins
* remove trash
* print on rank 0
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* fix
* fix
* fix
* fix
* fix the merge
* fix
* fix
* fix
* fix
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
184 lines
7.0 KiB
Python
184 lines
7.0 KiB
Python
import os
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
from transformers import LlamaForCausalLM
|
|
from utils import shared_tempdir
|
|
|
|
import colossalai
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import GeminiPlugin
|
|
from colossalai.lazy import LazyInitContext
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
from colossalai.testing import (
|
|
check_state_dict_equal,
|
|
clear_cache_before_run,
|
|
parameterize,
|
|
rerun_if_address_is_in_use,
|
|
spawn,
|
|
)
|
|
from tests.kit.model_zoo import model_zoo
|
|
|
|
MODEL_PLACEMENT_CONFIGS = [
|
|
{"placement_policy": "static", "shard_param_frac": 0.5},
|
|
]
|
|
|
|
OPTIM_PLACEMENT_CONFIGS = [
|
|
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.5}, # zero2-offload-half
|
|
]
|
|
|
|
|
|
@clear_cache_before_run()
|
|
@parameterize("placement_config", MODEL_PLACEMENT_CONFIGS)
|
|
@parameterize("model_name", ["transformers_bert_for_sequence_classification"])
|
|
@parameterize("use_safetensors", [False, True])
|
|
@parameterize("tp_size", [1, 2])
|
|
@parameterize("zero_size", [2])
|
|
def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: bool, tp_size: int, zero_size: int):
|
|
from transformers import BertForSequenceClassification
|
|
|
|
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
|
|
bert_model = model_fn()
|
|
|
|
enable_flash_attention = True if tp_size > 1 else False
|
|
enable_fused_normalization = True if tp_size > 1 else False
|
|
enable_jit_fused = True if tp_size > 1 else False
|
|
|
|
with shared_tempdir() as tempdir:
|
|
pretrained_path = os.path.join(tempdir, "pretrained")
|
|
bert_model.config.save_pretrained(save_directory=pretrained_path)
|
|
|
|
extra_dp_size = dist.get_world_size() // (zero_size * tp_size)
|
|
plugin = GeminiPlugin(
|
|
**placement_config,
|
|
tp_size=tp_size,
|
|
enable_flash_attention=enable_flash_attention,
|
|
enable_fused_normalization=enable_fused_normalization,
|
|
enable_jit_fused=enable_jit_fused,
|
|
extra_dp_size=extra_dp_size,
|
|
)
|
|
booster = Booster(plugin=plugin)
|
|
bert_model, _, _, _, _ = booster.boost(bert_model)
|
|
model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2
|
|
|
|
booster.save_model(
|
|
bert_model, pretrained_path, True, True, "", (model_size / 3), use_safetensors=use_safetensors
|
|
)
|
|
dist.barrier()
|
|
|
|
new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path)
|
|
check_state_dict_equal(bert_model.state_dict(only_rank_0=False), new_bert_model.state_dict())
|
|
|
|
|
|
@clear_cache_before_run()
|
|
@parameterize("placement_config", OPTIM_PLACEMENT_CONFIGS)
|
|
@parameterize("shard", [True, False])
|
|
@parameterize("model_name", ["transformers_llama_for_causal_lm"])
|
|
@parameterize("size_per_shard", [32])
|
|
@parameterize("tp_size", [1, 2])
|
|
@parameterize("zero_size", [2])
|
|
def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_shard: int, tp_size: int, zero_size: int):
|
|
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
|
|
criterion = lambda x: x.mean()
|
|
enable_flash_attention = True if tp_size > 1 else False
|
|
enable_fused_normalization = True if tp_size > 1 else False
|
|
enable_jit_fused = True if tp_size > 1 else False
|
|
extra_dp_size = dist.get_world_size() // (zero_size * tp_size)
|
|
plugin = GeminiPlugin(
|
|
**placement_config,
|
|
precision="fp16",
|
|
initial_scale=(2**14),
|
|
tp_size=tp_size,
|
|
extra_dp_size=extra_dp_size,
|
|
enable_flash_attention=enable_flash_attention,
|
|
enable_fused_normalization=enable_fused_normalization,
|
|
enable_jit_fused=enable_jit_fused,
|
|
)
|
|
booster = Booster(plugin=plugin)
|
|
|
|
model = model_fn()
|
|
new_model = model_fn()
|
|
optimizer = HybridAdam(model.parameters(), lr=0.001)
|
|
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
|
|
new_optimizer = HybridAdam(new_model.parameters(), lr=0.01)
|
|
new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion)
|
|
|
|
data = data_gen_fn()
|
|
data = {k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()}
|
|
output = model(**data)
|
|
output = output_transform_fn(output)
|
|
output_key = list(output.keys())[0]
|
|
loss = criterion(output[output_key])
|
|
|
|
booster.backward(loss, optimizer)
|
|
optimizer.step()
|
|
for group in optimizer.param_groups:
|
|
group["lr"] = 0.1
|
|
|
|
with shared_tempdir() as tempdir:
|
|
model_ckpt_path = f"{tempdir}/model"
|
|
optimizer_ckpt_path = f"{tempdir}/optimizer"
|
|
booster.save_model(model, model_ckpt_path, shard=shard, size_per_shard=size_per_shard)
|
|
|
|
booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=shard, size_per_shard=size_per_shard)
|
|
dist.barrier()
|
|
|
|
booster.load_model(new_model, model_ckpt_path)
|
|
check_state_dict_equal(
|
|
model.state_dict(only_rank_0=False), new_model.state_dict(only_rank_0=False), ignore_dtype=True
|
|
)
|
|
|
|
booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
|
|
check_state_dict_equal(optimizer.state_dict(only_rank_0=False), new_optimizer.state_dict(only_rank_0=False))
|
|
for group in new_optimizer.param_groups:
|
|
assert group["lr"] == 0.1
|
|
|
|
# Check the new model/optimizer can successfully run.
|
|
data = data_gen_fn()
|
|
data = {
|
|
k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()
|
|
}
|
|
output = new_model(**data)
|
|
output = output_transform_fn(output)
|
|
output_key = list(output.keys())[0]
|
|
loss = criterion(output[output_key])
|
|
booster.backward(loss, new_optimizer)
|
|
new_optimizer.step()
|
|
booster.save_model(new_model, model_ckpt_path, shard=shard)
|
|
booster.save_optimizer(new_optimizer, optimizer_ckpt_path, shard=shard)
|
|
|
|
|
|
def exam_lazy_from_pretrained():
|
|
llama_path = os.environ["LLAMA_PATH"]
|
|
plugin = GeminiPlugin()
|
|
booster = Booster(plugin=plugin)
|
|
orig_model = LlamaForCausalLM.from_pretrained(llama_path)
|
|
orig_state_dict = {k: v.half() for k, v in orig_model.state_dict().items()}
|
|
with LazyInitContext():
|
|
model = LlamaForCausalLM.from_pretrained(llama_path)
|
|
model, *_ = booster.boost(model)
|
|
with shared_tempdir() as tempdir:
|
|
save_path = os.path.join(tempdir, "model.pt")
|
|
booster.save_model(model, save_path, shard=False)
|
|
dist.barrier()
|
|
state_dict = torch.load(save_path, map_location="cpu")
|
|
check_state_dict_equal(state_dict, orig_state_dict, ignore_dtype=True)
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
exam_state_dict()
|
|
exam_state_dict_with_origin()
|
|
exam_lazy_from_pretrained()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@rerun_if_address_is_in_use()
|
|
def test_gemini_ckpIO():
|
|
spawn(run_dist, 4)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_gemini_ckpIO()
|