ColossalAI/tests/test_shardformer/test_flash_attention.py
Wang Binluo eea37da6fa
[fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016)
* add SimPO

* fix dataloader

* remove debug code

* add orpo

* fix style

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix torch colossalai version

* update transformers version

* [shardformer] DeepseekMoE support (#5871)

* [Feature] deepseek moe expert parallel implement

* [misc] fix typo, remove redundant file (#5867)

* [misc] fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] deepseek support & unit test

* [misc] remove debug code & useless print

* [misc] fix typos (#5872)

* [Feature] remove modeling file, use auto config. (#5884)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [Deepseek] remove redundant code (#5888)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [Feature/deepseek] resolve comment. (#5889)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [misc] mv module replacement into if branch

* [misc] add some warning message and modify some code in unit test

* [misc] fix typos

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)

* Diffusion Model Inference support

* Stable Diffusion 3 Support

* pixartalpha support

* [HotFix] CI,import,requirements-test for #5838 (#5892)

* [Hot Fix] CI,import,requirements-test

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] Enable PP + SP for llama (#5868)

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* use a one cross entropy func for all shardformer models

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)

* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint

* fix style

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix eval

* hotfix citation

* [zero] support all-gather overlap (#5898)

* [zero] support all-gather overlap

* [zero] add overlap all-gather flag

* [misc] fix typo

* [zero] update api

* fix orpo cross entropy loss

* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)

* Remove unnecessary calls to deepcopy

* Build DimSpec's difference dict only once

This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.

* Fix documentation of DimSpec's difference method

* [ShardFormer] fix qwen2 sp (#5903)

* [compatibility] support torch 2.2 (#5875)

* Support Pytorch 2.2.2

* keep build_on_pr file and update .compatibility

* fix object_to_tensor usage when torch>=2.3.0 (#5820)

* [misc] support torch2.3 (#5893)

* [misc] support torch2.3

* [devops] update compatibility ci

* [devops] update compatibility ci

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] remove debug

* [devops] remove debug

* [release] update version (#5912)

* [plugin] support all-gather overlap for hybrid parallel (#5919)

* [plugin] fixed all-gather overlap support for hybrid parallel

* add kto

* fix style, add kto data sample

* [Examples] Add lazy init to OPT and GPT examples (#5924)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [ColossalChat] Hotfix for ColossalChat (#5910)

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* fix ddp issue

* add Qwen 1.5 32B

* refactor tokenization

* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)

* cannot access local variable 'default_conversation' where it is not associated with a value

set default value for 'default_conversation'

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix test data

* refactor evaluation

* remove real data path

* remove real data path

* Add n_fused as an input from native_module (#5894)

* [FIX BUG] convert env param to int in (#5934)

* [Hotfix] Fix ZeRO typo #5936

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)

* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix style

* fix style

* fix style

* [shardformer] hotfix attn mask (#5945)

* [shardformer] hotfix attn mask (#5947)

* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)

* Distrifusion Support source

* comp comm overlap optimization

* sd3 benchmark

* pixart distrifusion bug fix

* sd3 bug fix and benchmark

* generation bug fix

* naming fix

* add docstring, fix counter and shape error

* add reference

* readme and requirement

* [zero] hotfix update master params (#5951)

* [release] update version (#5952)

* [Chat] Fix lora (#5946)

* fix merging

* remove filepath

* fix style

* Update README.md (#5958)

* [hotfix] Remove unused plan section (#5957)

* remove readme

* fix readme

* update

* [test] add mixtral for sequence classification

* [test] add mixtral transformer test

* [moe] fix plugin

* [test] mixtra pp shard test

* [chore] handle non member group

* [zero] solve hang

* [test] pass mixtral shardformer test

* [moe] implement transit between non moe tp and ep

* [zero] solve hang

* [misc] solve booster hang by rename the variable

* solve hang when parallel mode = pp + dp

* [moe] implement submesh initialization

* [moe] add mixtral dp grad scaling when not all experts are activated

* [chore] manually revert unintended commit

* [chore] trivial fix

* [chore] arg pass & remove drop token

* [test] add mixtral modelling test

* [moe] implement tp

* [moe] test deepseek

* [moe] clean legacy code

* [Feature] MoE Ulysses Support (#5918)

* moe sp support

* moe sp bug solve

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [chore] minor fix

* [moe] init moe plugin comm setting with sp

* moe sp + ep bug fix

* [moe] finalize test (no pp)

* [moe] full test for deepseek and mixtral (pp + sp to fix)

* [chore] minor fix after rebase

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [chore] solve moe ckpt test failure and some other arg pass failure

* [moe] remove ops

* [test] fix test: test_zero1_2

* [bug] fix: somehow logger hangs the program

* [moe] deepseek moe sp support

* [test] add check

* [deepseek] replace attn (a workaround for bug in transformers)

* [misc] skip redunant test

* [misc] remove debug/print code

* [moe] refactor mesh assignment

* Revert "[moe] implement submesh initialization"

This reverts commit 2f9bce6686.

* [chore] change moe_pg_mesh to private

* [misc] remove incompatible test config

* [misc] fix ci failure: change default value to false in moe plugin

* [misc] remove useless condition

* [chore] docstring

* [moe] remove force_overlap_comm flag and add warning instead

* [doc] add MoeHybridParallelPlugin docstring

* [moe] solve dp axis issue

* [chore] remove redundant test case, print string & reduce test tokens

* [feat] Dist Loader for Eval (#5950)

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix tp error

* remove unused parameters

* remove unused

* update inference

* update docs

* update inference

---------

Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [lora] lora support hybrid parallel plugin (#5956)

* lora support hybrid plugin

* fix

* fix

* fix

* fix

* Support overall loss, update KTO logging

* [Docs] clarify launch port

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Hotfix] README link (#5966)

* update ignore

* update readme

* run style

* update readme

* [Hotfix] Avoid fused RMSnorm import error without apex (#5985)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Chat] fix readme (#5989)

* fix readme

* fix readme, tokenization fully tested

* fix readme, tokenization fully tested

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix sync condition (#6000)

* [plugin] add cast inputs option for zero (#6003)

* [pre-commit.ci] pre-commit autoupdate (#5995)

updates:
- [github.com/psf/black-pre-commit-mirror: 24.4.2 → 24.8.0](https://github.com/psf/black-pre-commit-mirror/compare/24.4.2...24.8.0)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [misc] Bypass the huggingface bug to solve the mask mismatch problem (#5991)

* [Feature] Zigzag Ring attention (#5905)

* halfway

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* unified cross entropy func for all shardformer models

* remove redundant lines

* add basic ring attn; debug cross entropy

* fwd bwd logic complete

* fwd bwd logic complete; add experimental triton rescale

* precision tests passed

* precision tests passed

* fix typos and remove misc files

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add sp_mode to benchmark; fix varlen interface

* update softmax_lse shape by new interface

* change tester name

* remove buffer clone; support packed seq layout

* add varlen tests

* fix typo

* all tests passed

* add dkv_group; fix mask

* remove debug statements

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [misc] update compatibility (#6008)

* [misc] update compatibility

* [misc] update requirements

* [devops] disable requirements cache

* [test] fix torch ddp test

* [test] fix rerun on address in use

* [test] fix lazy init

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the merge

* fix the merge

* overlap kv comm with output rescale (#6017)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* fix the merge

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the merge

* fix

* fix

* fix the merge

* fix

* [misc] Use dist logger in plugins (#6011)

* use dist logger in plugins

* remove trash

* print on rank 0

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* fix

* fix

* fix

* fix

* fix the merge

* fix

* fix

* fix

* fix

---------

Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
2024-08-22 09:21:34 +08:00

142 lines
5.6 KiB
Python

import math
from copy import copy
import torch
from torch.testing import assert_close
from colossalai.kernel.kernel_loader import FlashAttentionLoader, FlashAttentionWithCustomMaskLoader
from colossalai.shardformer.layer import AttnMaskType, ColoAttention
from colossalai.shardformer.layer.attn import invert_mask
from colossalai.testing import clear_cache_before_run, parameterize
from colossalai.utils import get_current_device, set_seed
DTYPE = [torch.float16, torch.bfloat16]
B, N, S, D = 2, 8, 256, 32
TOL_MAP = {
torch.float16: {"atol": 5e-4, "rtol": 2e-3},
torch.bfloat16: {},
}
def attention_ref(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask=None, dropout_p=0.0):
head_dim = q.size(-1)
attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(head_dim)
if attn_mask is not None:
attn_weights = attn_weights + attn_mask
attn_weights = torch.softmax(attn_weights, dim=-1, dtype=torch.float).to(q.dtype)
attn_weights = torch.dropout(attn_weights, p=dropout_p, train=True)
attn_output = torch.matmul(attn_weights, v)
return attn_output
def gen_padded_kwargs(dtype: torch.dtype):
padding_mask = torch.ones((B, S), dtype=torch.int, device=get_current_device())
padding_mask[0, : S // 4] = 0
return (
ColoAttention.prepare_attn_kwargs((B, 1, S, S), dtype, padding_mask.device, q_padding_mask=padding_mask),
padding_mask,
)
def gen_padded_causal_kwargs(dtype: torch.dtype):
padding_mask = torch.ones((B, S), dtype=torch.int, device=get_current_device())
padding_mask[0, S // 2 :] = 0
return (
ColoAttention.prepare_attn_kwargs(
(B, 1, S, S), dtype, padding_mask.device, q_padding_mask=padding_mask, is_causal=True
),
padding_mask,
)
def gen_causal_kwargs(dtype: torch.dtype):
return ColoAttention.prepare_attn_kwargs((B, 1, S, S), dtype, get_current_device(), is_causal=True), None
def gen_custom_kwargs(dtype: torch.dtype):
attn_mask = torch.ones((B, S, S), dtype=dtype, device=get_current_device())
attn_mask[0, : S // 2, S // 2 :] = 0
attn_mask[0, S // 2 :, : S // 2] = 0
attn_mask[1, :, S // 4 :] = 0
attn_mask = invert_mask(attn_mask).unsqueeze(1)
assert not torch.all(attn_mask != 0, dim=-1).any()
return {"attention_mask": attn_mask}, None
def post_process_kwargs_for_raw_attn(attn_kwargs: dict):
if "attention_mask_type" in attn_kwargs:
attn_kwargs = copy(attn_kwargs)
mask_type = attn_kwargs.pop("attention_mask_type")
attn_kwargs["is_causal"] = mask_type in (AttnMaskType.CAUSAL, AttnMaskType.PADDED_CAUSAL)
return attn_kwargs
def check_attn_func(dtype: torch.dtype, attn_func, attn_kwargs: dict, padding_mask=None):
tols = TOL_MAP[dtype]
q = torch.rand((B, N, S, D), dtype=dtype, device=get_current_device(), requires_grad=True)
k = torch.rand((B, N, S, D), dtype=dtype, device=get_current_device(), requires_grad=True)
v = torch.rand((B, N, S, D), dtype=dtype, device=get_current_device(), requires_grad=True)
q_flash = q.clone().detach().requires_grad_(True)
k_flash = k.clone().detach().requires_grad_(True)
v_flash = v.clone().detach().requires_grad_(True)
attn_mask = attn_kwargs.get("attention_mask", None)
ref_output = attention_ref(q, k, v, attn_mask)
output = attn_func(q_flash, k_flash, v_flash, **attn_kwargs)
if padding_mask is not None:
# [B, Sq] -> [B, 1, Sq, 1]
padding_mask = padding_mask[:, None, :, None].logical_not()
ref_output = ref_output.masked_fill(padding_mask, 0)
output = output.masked_fill(padding_mask, 0)
assert_close(output, ref_output, **tols)
output.mean().backward()
ref_output.mean().backward()
assert_close(q.grad, q_flash.grad, **tols)
assert_close(k.grad, k_flash.grad, **tols)
assert_close(v.grad, v_flash.grad, **tols)
@clear_cache_before_run()
@parameterize("dtype", DTYPE)
def test_flash_attn_func(dtype: torch.dtype):
torch.backends.cudnn.deterministic = True
set_seed(0)
# (func, name, need_postprocess)
avail_attn_funcs = [(ColoAttention.attention, "coloattn", False)]
avail_custom_mask_attn_funcs = [(ColoAttention.attention, "coloattn", False)]
avail_padding_mask_attn_funcs = [(ColoAttention.attention, "coloattn", False)]
for ext_cls in FlashAttentionLoader.REGISTRY:
ext = ext_cls()
if ext.is_available():
ext.assert_compatible()
avail_attn_funcs.append((ext.load(), ext.name, True))
for ext_cls in FlashAttentionWithCustomMaskLoader.REGISTRY:
ext = ext_cls()
if ext.is_available():
ext.assert_compatible()
avail_custom_mask_attn_funcs.append((ext.load(), ext.name, True))
test_sets = {
"none": (lambda dtype: ({}, None), avail_attn_funcs),
"padded": (gen_padded_kwargs, avail_padding_mask_attn_funcs),
"padded_causal": (gen_padded_causal_kwargs, avail_padding_mask_attn_funcs),
"causal": (gen_causal_kwargs, avail_attn_funcs),
"custom": (gen_custom_kwargs, avail_custom_mask_attn_funcs),
}
for mask_type, (gen_kwargs_func, attn_funcs) in test_sets.items():
attn_kwargs, padding_mask = gen_kwargs_func(dtype)
for attn_func, name, need_postprocess in attn_funcs:
print(f"{dtype}, {name}, {mask_type}")
if mask_type == "padded":
pass
if need_postprocess:
check_attn_func(dtype, attn_func, post_process_kwargs_for_raw_attn(attn_kwargs), padding_mask)
else:
check_attn_func(dtype, attn_func, attn_kwargs, padding_mask)
if __name__ == "__main__":
test_flash_attn_func()