Files
ColossalAI/tests/test_fx/test_tracer/test_activation_checkpoint_annotation.py
Super Daniel 1e88811c7a [autoparallel] move ckpt solvers to autoparallel folder / refactor code (#1764)
* [autoparallel] first move.

* [autoparallel] add solver rotor.

* [autoparallel] add ckpt solvers.

* [autoparallel] modify codegen.

* [fx] fix annotation in test.

* [fx] remove check.

* [autoparallel] polish docstring.

* [fx] refactor MetaTensor.
2022-11-01 10:43:15 +08:00

64 lines
1.6 KiB
Python

import torch
import torch.nn as nn
from torch.fx import GraphModule
from torch.utils.checkpoint import checkpoint
from colossalai.fx import ColoTracer
class MLP(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(4, 4)
self.linear2 = torch.nn.Linear(4, 4)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return x
# Simple module for demonstration
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.mlp_1 = MLP()
self.mlp_2 = MLP()
self.output = torch.nn.Linear(4, 4)
def forward(self, x):
x = checkpoint(self.mlp_1, x)
x = checkpoint(self.mlp_2, x)
x = self.output(x)
return x
def test_activation_checkpoint_annotation():
module = MyModule()
# test tracing with activation checkpoint
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(module)
gm = GraphModule(module, graph)
for node in gm.graph.nodes:
if node.name in ['mlp_1_linear1', 'mlp_1_linear2']:
assert node.meta.get('activation_checkpoint', -1) == 0
for node in gm.graph.nodes:
if node.name in ['mlp_2_linear1', 'mlp_2_linear2']:
assert node.meta.get('activation_checkpoint', -1) == 1
tracer = ColoTracer(trace_act_ckpt=False)
graph = tracer.trace(module)
gm = GraphModule(module, graph)
for node in gm.graph.nodes:
assert not hasattr(node, 'activation_checkpoint')
if __name__ == '__main__':
test_activation_checkpoint_annotation()