mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-05-31 11:25:27 +00:00
* halfway * fix cross-PP-stage position id length diff bug * fix typo * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * unified cross entropy func for all shardformer models * remove redundant lines * add basic ring attn; debug cross entropy * fwd bwd logic complete * fwd bwd logic complete; add experimental triton rescale * precision tests passed * precision tests passed * fix typos and remove misc files * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add sp_mode to benchmark; fix varlen interface * update softmax_lse shape by new interface * change tester name * remove buffer clone; support packed seq layout * add varlen tests * fix typo * all tests passed * add dkv_group; fix mask * remove debug statements --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
80 lines
2.4 KiB
Python
80 lines
2.4 KiB
Python
import torch
|
|
import transformers
|
|
|
|
from ..registry import ModelAttribute, model_zoo
|
|
|
|
try:
|
|
from transformers import CohereConfig
|
|
|
|
HAS_COMMAND = True
|
|
except ImportError:
|
|
HAS_COMMAND = False
|
|
|
|
if HAS_COMMAND:
|
|
# ===============================
|
|
# Register Command-R
|
|
# ===============================
|
|
|
|
def data_gen():
|
|
input_ids = torch.Tensor(
|
|
[
|
|
[1, 15043, 29892, 590, 11203, 338, 274, 1082, 1, 15043, 29892, 590, 11203, 338, 274, 1082],
|
|
[1, 15043, 29892, 590, 11203, 338, 274, 1082, 1, 15043, 29892, 590, 11203, 338, 274, 1082],
|
|
]
|
|
).long()
|
|
|
|
attention_mask = torch.Tensor(
|
|
[
|
|
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
|
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
|
]
|
|
).long()
|
|
|
|
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
|
|
|
# label is needed for causal lm
|
|
def data_gen_for_causal_lm():
|
|
data = data_gen()
|
|
labels = data["input_ids"].clone()
|
|
data["labels"] = labels
|
|
return data
|
|
|
|
# transform the output to a dict
|
|
output_transform_fn = lambda x: x
|
|
|
|
# function to get the loss
|
|
loss_fn = lambda output: output["last_hidden_state"].mean()
|
|
loss_fn_for_causal_lm = lambda output: output["loss"]
|
|
loss_fn_for_seq_classification = lambda output: output["logits"].mean()
|
|
|
|
config = CohereConfig(
|
|
num_hidden_layers=8,
|
|
hidden_size=32,
|
|
intermediate_size=64,
|
|
num_attention_heads=4,
|
|
max_position_embeddings=128,
|
|
)
|
|
|
|
if hasattr(config, "pad_token_id"):
|
|
config.pad_token_id = config.eos_token_id
|
|
|
|
# register the following models
|
|
# transformers.CohereModel,
|
|
# transformers.CohereForCausalLM,
|
|
model_zoo.register(
|
|
name="transformers_command",
|
|
model_fn=lambda: transformers.CohereModel(config),
|
|
data_gen_fn=data_gen,
|
|
output_transform_fn=output_transform_fn,
|
|
loss_fn=loss_fn,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|
|
model_zoo.register(
|
|
name="transformers_command_for_causal_lm",
|
|
model_fn=lambda: transformers.CohereForCausalLM(config),
|
|
data_gen_fn=data_gen_for_causal_lm,
|
|
output_transform_fn=output_transform_fn,
|
|
loss_fn=loss_fn_for_causal_lm,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|