1
0
mirror of https://github.com/hpcaitech/ColossalAI.git synced 2025-04-30 12:45:33 +00:00
ColossalAI/colossalai/legacy/inference/tensor_parallel/policies/bloom.py
Xu Kai fd6482ad8c
[inference] Refactor inference architecture ()
* [inference] support only TP ()

* support only tp

* enable tp

* add support for bloom ()

* [refactor] refactor gptq and smoothquant llama ()

* refactor gptq and smoothquant llama

* fix import error

* fix linear import torch-int

* fix smoothquant llama import error

* fix import accelerate error

* fix bug

* fix import smooth cuda

* fix smoothcuda

* [Inference Refactor] Merge chatglm2 with pp and tp ()

merge chatglm with pp and tp

* [Refactor] remove useless inference code ()

* remove useless code

* fix quant model

* fix test import bug

* mv original inference legacy

* fix chatglm2

* [Refactor] refactor policy search and quant type controlling in inference ()

* [Refactor] refactor policy search and quant type controling in inference

* [inference] update readme ()

* update readme

* update readme

* fix architecture

* fix table

* fix table

* [inference] udpate example ()

* udpate example

* fix run.sh

* fix rebase bug

* fix some errors

* update readme

* add some features

* update interface

* update readme

* update benchmark

* add requirements-infer

---------

Co-authored-by: Bin Jia <45593998+FoolPlayer@users.noreply.github.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
2023-11-19 21:05:05 +08:00

103 lines
4.3 KiB
Python

from functools import partial
import torch
from torch.nn import LayerNorm
import colossalai.shardformer.layer as col_nn
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
from colossalai.shardformer.policies.bloom import BloomForCausalLMPolicy
from ..modeling.bloom import BloomInferenceForwards
try:
from colossalai.kernel.triton import layer_norm
HAS_TRITON_NORM = True
except:
print("Some of our kernels require triton. You might want to install triton from https://github.com/openai/triton")
HAS_TRITON_NORM = False
def get_triton_layernorm_forward():
if HAS_TRITON_NORM:
def _triton_layernorm_forward(self: LayerNorm, hidden_states: torch.Tensor):
return layer_norm(hidden_states, self.weight.data, self.bias, self.eps)
return _triton_layernorm_forward
else:
return None
class BloomModelInferPolicy(BloomForCausalLMPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
from transformers.models.bloom.modeling_bloom import BloomAttention, BloomBlock, BloomForCausalLM, BloomModel
policy = super().module_policy()
if self.shard_config.extra_kwargs.get("inference_gptq", False):
from colossalai.inference.quant.gptq.cai_gptq import ColCaiQuantLinear, RowCaiQuantLinear
policy[BloomBlock] = ModulePolicyDescription(
attribute_replacement={
"self_attention.hidden_size": self.model.config.hidden_size
// self.shard_config.tensor_parallel_size,
"self_attention.split_size": self.model.config.hidden_size
// self.shard_config.tensor_parallel_size,
"self_attention.num_heads": self.model.config.n_head // self.shard_config.tensor_parallel_size,
},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attention.query_key_value",
target_module=ColCaiQuantLinear,
kwargs={"split_num": 3},
),
SubModuleReplacementDescription(
suffix="self_attention.dense", target_module=RowCaiQuantLinear, kwargs={"split_num": 1}
),
SubModuleReplacementDescription(
suffix="self_attention.attention_dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="mlp.dense_h_to_4h", target_module=ColCaiQuantLinear, kwargs={"split_num": 1}
),
SubModuleReplacementDescription(
suffix="mlp.dense_4h_to_h", target_module=RowCaiQuantLinear, kwargs={"split_num": 1}
),
],
)
# NOTE set inference mode to shard config
self.shard_config._infer()
method_replacement = {
"forward": BloomInferenceForwards.bloom_for_causal_lm_forward,
"prepare_inputs_for_generation": BloomInferenceForwards.bloom_for_causal_lm_prepare_inputs_for_generation,
}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=BloomForCausalLM
)
method_replacement = {"forward": BloomInferenceForwards.bloom_model_forward}
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=BloomModel)
method_replacement = {"forward": BloomInferenceForwards.bloom_block_forward}
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=BloomBlock)
method_replacement = {"forward": BloomInferenceForwards.bloom_attention_forward}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=BloomAttention
)
if HAS_TRITON_NORM:
infer_method = get_triton_layernorm_forward()
method_replacement = {"forward": partial(infer_method)}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=LayerNorm
)
return policy