diff --git a/README.md b/README.md index 6beab1e98..59769d6d8 100644 --- a/README.md +++ b/README.md @@ -10,7 +10,8 @@

-[**简体中文**](README.zh.md)|[**Discord**](https://discord.gg/xfNDzZ9t) +[**简体中文**](README.zh.md) |[**Discord**](https://discord.gg/xfNDzZ9t) |[**Documents**](https://db-gpt.readthedocs.io/en/latest/) + ## What is DB-GPT? diff --git a/README.zh.md b/README.zh.md index bc8b24651..f6b0f2f04 100644 --- a/README.zh.md +++ b/README.zh.md @@ -9,7 +9,7 @@

-[**English**](README.md)|[**Discord**](https://discord.gg/ea6BnZkY) +[**English**](README.md)|[**Discord**](https://discord.gg/ea6BnZkY) |[**Documents**](https://db-gpt.readthedocs.io/projects/db-gpt-docs-zh-cn/zh_CN/latest/) ## DB-GPT 是什么? diff --git a/pilot/vector_store/weaviate_store.py b/pilot/vector_store/weaviate_store.py index b461122db..e208dde35 100644 --- a/pilot/vector_store/weaviate_store.py +++ b/pilot/vector_store/weaviate_store.py @@ -26,9 +26,7 @@ class WeaviateStore(VectorStoreBase): KNOWLEDGE_UPLOAD_ROOT_PATH, ctx["vector_store_name"] + ".vectordb" ) - self.vector_store_client = weaviate.Client( - self.weaviate_url - ) + self.vector_store_client = weaviate.Client(self.weaviate_url) def similar_search(self, text: str, topk: int) -> None: """Perform similar search in Weaviate""" @@ -37,8 +35,13 @@ class WeaviateStore(VectorStoreBase): "concepts": [text], "distance": 0.75, # prior to v1.14 use "certainty" instead of "distance" } - response = (self.vector_store_client.query.get("Document", ["metadata", "text"]).with_near_vector( - {"vector": nearText}).with_limit(topk).with_additional(["distance"]).do()) + response = ( + self.vector_store_client.query.get("Document", ["metadata", "text"]) + .with_near_vector({"vector": nearText}) + .with_limit(topk) + .with_additional(["distance"]) + .do() + ) return json.dumps(response, indent=2) @@ -61,25 +64,37 @@ class WeaviateStore(VectorStoreBase): { "class": "Document", "description": "A document with metadata and text", - "moduleConfig": {"text2vec-transformers": {"poolingStrategy": "masked_mean", "vectorizeClassName": False} - }, + "moduleConfig": { + "text2vec-transformers": { + "poolingStrategy": "masked_mean", + "vectorizeClassName": False, + } + }, "properties": [ { "dataType": ["text"], "moduleConfig": { - "text2vec-transformers": {"skip": False, "vectorizePropertyName": False}}, + "text2vec-transformers": { + "skip": False, + "vectorizePropertyName": False, + } + }, "description": "Metadata of the document", - "name": "metadata" + "name": "metadata", }, { "dataType": ["text"], "moduleConfig": { - "text2vec-transformers": {"skip": False, "vectorizePropertyName": False}}, + "text2vec-transformers": { + "skip": False, + "vectorizePropertyName": False, + } + }, "description": "Text content of the document", - "name": "text" - } + "name": "text", + }, ], - "vectorizer": "text2vec-transformers" + "vectorizer": "text2vec-transformers", } ] } @@ -99,10 +114,6 @@ class WeaviateStore(VectorStoreBase): # Batch import all documents for i in range(len(texts)): - properties = { - "metadata": metadatas[i], - "text": texts[i] - } + properties = {"metadata": metadatas[i], "text": texts[i]} - self.vector_store_client.batch.add_data_object( - properties, "Document") + self.vector_store_client.batch.add_data_object(properties, "Document")