mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-05 11:01:09 +00:00
add vicuna embedding
This commit is contained in:
@@ -2,3 +2,85 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
|
||||
@torch.inference_mode()
|
||||
def generate_output(model, tokenizer, params, device, context_len=2048):
|
||||
prompt = params["prompt"]
|
||||
temperature = float(params.get("temperature", 1.0))
|
||||
max_new_tokens = int(params.get("max_new_tokens", 256))
|
||||
stop_parameter = params.get("stop", None)
|
||||
|
||||
if stop_parameter == tokenizer.eso_token:
|
||||
stop_parameter = None
|
||||
|
||||
stop_strings = []
|
||||
if isinstance(stop_parameter, str):
|
||||
stop_strings.append(stop_parameter)
|
||||
elif isinstance(stop_parameter, list):
|
||||
stop_strings = stop_parameter
|
||||
elif stop_parameter is None:
|
||||
pass
|
||||
else:
|
||||
raise TypeError("Stop parameter must be string or list of strings.")
|
||||
|
||||
pos = -1
|
||||
input_ids = tokenizer(prompt).input_ids
|
||||
output_ids = []
|
||||
|
||||
max_src_len = context_len - max_new_tokens - 8
|
||||
input_ids = input_ids[-max_src_len:]
|
||||
|
||||
for i in range(max_new_tokens):
|
||||
if i == 0:
|
||||
out = model(torch.as_tensor([input_ids], device=device), use_cache=True)
|
||||
logits = out.logits
|
||||
past_key_values = out.past_key_values
|
||||
else:
|
||||
out = model(
|
||||
input_ids=torch.as_tensor([[token]], device=device),
|
||||
use_cache=True,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
logits = out.logits
|
||||
past_key_values = out.past_key_value
|
||||
last_token_logits = logits[0][-1]
|
||||
|
||||
if temperature < 1e-4:
|
||||
token = int(torch.argmax(last_token_logits))
|
||||
else:
|
||||
probs = torch.softmax(last_token_logits / temperature, dim=1)
|
||||
token = int(torch.multinomial(probs, num_samples=1))
|
||||
|
||||
output_ids.append(token)
|
||||
|
||||
if token == tokenizer.eos_token_id:
|
||||
stopped = True
|
||||
else:
|
||||
stopped = False
|
||||
|
||||
output = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
for stop_str in stop_strings:
|
||||
pos = output.rfind(stop_str)
|
||||
if pos != -1:
|
||||
output = output[:pos]
|
||||
stoppped = True
|
||||
break
|
||||
else:
|
||||
pass
|
||||
|
||||
if stoppped:
|
||||
break
|
||||
|
||||
del past_key_values
|
||||
if pos != -1:
|
||||
return output[:pos]
|
||||
return output
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_embeddings(model, tokenizer, prompt):
|
||||
input_ids = tokenizer(prompt).input_ids
|
||||
input_embeddings = model.get_input_embeddings()
|
||||
embeddings = input_embeddings(torch.LongTensor([input_ids]))
|
||||
mean = torch.mean(embeddings[0], 0).cpu().detach()
|
||||
return mean
|
Reference in New Issue
Block a user