Merge remote-tracking branch 'origin/TY_08_DEV_NEW' into dbgpt_api

This commit is contained in:
aries_ckt
2023-08-29 15:16:47 +08:00
169 changed files with 2480 additions and 2421 deletions

View File

@@ -45,4 +45,39 @@ print(f'Public url: {url}')
time.sleep(60 * 60 * 24)
```
Open `url` with your browser to see the website.
Open `url` with your browser to see the website.
##### Q5: (Windows) execute `pip install -e .` error
The error log like the following:
```
× python setup.py bdist_wheel did not run successfully.
│ exit code: 1
╰─> [11 lines of output]
running bdist_wheel
running build
running build_py
creating build
creating build\lib.win-amd64-cpython-310
creating build\lib.win-amd64-cpython-310\cchardet
copying src\cchardet\version.py -> build\lib.win-amd64-cpython-310\cchardet
copying src\cchardet\__init__.py -> build\lib.win-amd64-cpython-310\cchardet
running build_ext
building 'cchardet._cchardet' extension
error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tools": https://visualstudio.microsoft.com/visual-cpp-build-tools/
[end of output]
```
Download and install `Microsoft C++ Build Tools` from [visual-cpp-build-tools](https://visualstudio.microsoft.com/visual-cpp-build-tools/)
##### Q6: `Torch not compiled with CUDA enabled`
```
2023-08-19 16:24:30 | ERROR | stderr | raise AssertionError("Torch not compiled with CUDA enabled")
2023-08-19 16:24:30 | ERROR | stderr | AssertionError: Torch not compiled with CUDA enabled
```
1. Install [CUDA Toolkit](https://developer.nvidia.com/cuda-toolkit-archive)
2. Reinstall PyTorch [start-locally](https://pytorch.org/get-started/locally/#start-locally) with CUDA support.

View File

@@ -102,6 +102,11 @@ You can configure basic parameters in the .env file, for example setting LLM_MOD
bash ./scripts/examples/load_examples.sh
```
On windows platform:
```PowerShell
.\scripts\examples\load_examples.bat
```
1.Run db-gpt server
```bash

View File

@@ -3,46 +3,82 @@ Docker Install
### Docker (Experimental)
#### 1. Building Docker image
#### 1. Preparing docker images
**Pull docker image from the [Eosphoros AI Docker Hub](https://hub.docker.com/u/eosphorosai)**
```bash
$ bash docker/build_all_images.sh
docker pull eosphorosai/dbgpt:latest
```
**(Optional) Building Docker image**
```bash
bash docker/build_all_images.sh
```
Review images by listing them:
```bash
$ docker images|grep db-gpt
docker images|grep "eosphorosai/dbgpt"
```
Output should look something like the following:
```
db-gpt-allinone latest e1ffd20b85ac 45 minutes ago 14.5GB
db-gpt latest e36fb0cca5d9 3 hours ago 14GB
eosphorosai/dbgpt-allinone latest 349d49726588 27 seconds ago 15.1GB
eosphorosai/dbgpt latest eb3cdc5b4ead About a minute ago 14.5GB
```
`eosphorosai/dbgpt` is the base image, which contains the project's base dependencies and a sqlite database. `eosphorosai/dbgpt-allinone` build from `eosphorosai/dbgpt`, which contains a mysql database.
You can pass some parameters to docker/build_all_images.sh.
```bash
$ bash docker/build_all_images.sh \
--base-image nvidia/cuda:11.8.0-devel-ubuntu22.04 \
bash docker/build_all_images.sh \
--base-image nvidia/cuda:11.8.0-runtime-ubuntu22.04 \
--pip-index-url https://pypi.tuna.tsinghua.edu.cn/simple \
--language zh
```
You can execute the command `bash docker/build_all_images.sh --help` to see more usage.
#### 2. Run all in one docker container
#### 2. Run docker container
**Run with local model**
**Run with local model and SQLite database**
```bash
$ docker run --gpus "device=0" -d -p 3306:3306 \
docker run --gpus all -d \
-p 5000:5000 \
-e LOCAL_DB_TYPE=sqlite \
-e LOCAL_DB_PATH=data/default_sqlite.db \
-e LLM_MODEL=vicuna-13b-v1.5 \
-e LANGUAGE=zh \
-v /data/models:/app/models \
--name dbgpt \
eosphorosai/dbgpt
```
Open http://localhost:5000 with your browser to see the product.
- `-e LLM_MODEL=vicuna-13b-v1.5`, means we use vicuna-13b-v1.5 as llm model, see /pilot/configs/model_config.LLM_MODEL_CONFIG
- `-v /data/models:/app/models`, means we mount the local model file directory `/data/models` to the docker container directory `/app/models`, please replace it with your model file directory.
You can see log with command:
```bash
docker logs dbgpt -f
```
**Run with local model and MySQL database**
```bash
docker run --gpus all -d -p 3306:3306 \
-p 5000:5000 \
-e LOCAL_DB_HOST=127.0.0.1 \
-e LOCAL_DB_PASSWORD=aa123456 \
-e MYSQL_ROOT_PASSWORD=aa123456 \
-e LLM_MODEL=vicuna-13b \
-e LLM_MODEL=vicuna-13b-v1.5 \
-e LANGUAGE=zh \
-v /data/models:/app/models \
--name db-gpt-allinone \
@@ -52,21 +88,21 @@ $ docker run --gpus "device=0" -d -p 3306:3306 \
Open http://localhost:5000 with your browser to see the product.
- `-e LLM_MODEL=vicuna-13b`, means we use vicuna-13b as llm model, see /pilot/configs/model_config.LLM_MODEL_CONFIG
- `-e LLM_MODEL=vicuna-13b-v1.5`, means we use vicuna-13b-v1.5 as llm model, see /pilot/configs/model_config.LLM_MODEL_CONFIG
- `-v /data/models:/app/models`, means we mount the local model file directory `/data/models` to the docker container directory `/app/models`, please replace it with your model file directory.
You can see log with command:
```bash
$ docker logs db-gpt-allinone -f
docker logs db-gpt-allinone -f
```
**Run with openai interface**
```bash
$ PROXY_API_KEY="You api key"
$ PROXY_SERVER_URL="https://api.openai.com/v1/chat/completions"
$ docker run --gpus "device=0" -d -p 3306:3306 \
PROXY_API_KEY="You api key"
PROXY_SERVER_URL="https://api.openai.com/v1/chat/completions"
docker run --gpus all -d -p 3306:3306 \
-p 5000:5000 \
-e LOCAL_DB_HOST=127.0.0.1 \
-e LOCAL_DB_PASSWORD=aa123456 \