feat(model): Add new LLMClient and new build tools (#967)

This commit is contained in:
Fangyin Cheng
2023-12-23 16:33:01 +08:00
committed by GitHub
parent 12234ae258
commit 0c46c339ca
30 changed files with 1072 additions and 133 deletions

View File

@@ -0,0 +1,149 @@
"""AWEL: Simple llm client example
DB-GPT will automatically load and execute the current file after startup.
Example:
.. code-block:: shell
DBGPT_SERVER="http://127.0.0.1:5000"
curl -X POST $DBGPT_SERVER/api/v1/awel/trigger/examples/simple_client/generate \
-H "Content-Type: application/json" -d '{
"model": "proxyllm",
"messages": "hello"
}'
curl -X POST $DBGPT_SERVER/api/v1/awel/trigger/examples/simple_client/generate_stream \
-H "Content-Type: application/json" -d '{
"model": "proxyllm",
"messages": "hello",
"stream": true
}'
curl -X POST $DBGPT_SERVER/api/v1/awel/trigger/examples/simple_client/count_token \
-H "Content-Type: application/json" -d '{
"model": "proxyllm",
"messages": "hello"
}'
"""
from typing import Dict, Any, AsyncIterator, Optional, Union, List
from dbgpt._private.pydantic import BaseModel, Field
from dbgpt.component import ComponentType
from dbgpt.core.awel import DAG, HttpTrigger, MapOperator, TransformStreamAbsOperator
from dbgpt.core import (
ModelMessage,
LLMClient,
LLMOperator,
StreamingLLMOperator,
ModelOutput,
ModelRequest,
)
from dbgpt.model import DefaultLLMClient
from dbgpt.model.cluster import WorkerManagerFactory
class TriggerReqBody(BaseModel):
messages: Union[str, List[Dict[str, str]]] = Field(
..., description="User input messages"
)
model: str = Field(..., description="Model name")
stream: Optional[bool] = Field(default=False, description="Whether return stream")
class RequestHandleOperator(MapOperator[TriggerReqBody, ModelRequest]):
def __init__(self, **kwargs):
super().__init__(**kwargs)
async def map(self, input_value: TriggerReqBody) -> ModelRequest:
messages = [ModelMessage.build_human_message(input_value.messages)]
await self.current_dag_context.save_to_share_data(
"request_model_name", input_value.model
)
return ModelRequest(
model=input_value.model,
messages=messages,
echo=False,
)
class LLMMixin:
@property
def llm_client(self) -> LLMClient:
if not self._llm_client:
worker_manager = self.system_app.get_component(
ComponentType.WORKER_MANAGER_FACTORY, WorkerManagerFactory
).create()
self._llm_client = DefaultLLMClient(worker_manager)
return self._llm_client
class MyLLMOperator(LLMMixin, LLMOperator):
def __init__(self, llm_client: LLMClient = None, **kwargs):
super().__init__(llm_client, **kwargs)
class MyStreamingLLMOperator(LLMMixin, StreamingLLMOperator):
def __init__(self, llm_client: LLMClient = None, **kwargs):
super().__init__(llm_client, **kwargs)
class MyLLMStreamingOperator(TransformStreamAbsOperator[ModelOutput, str]):
async def transform_stream(
self, input_value: AsyncIterator[ModelOutput]
) -> AsyncIterator[str]:
from dbgpt.model.utils.chatgpt_utils import _to_openai_stream
model = await self.current_dag_context.get_share_data("request_model_name")
async for output in _to_openai_stream(model, input_value):
yield output
class MyModelToolOperator(LLMMixin, MapOperator[TriggerReqBody, Dict[str, Any]]):
def __init__(self, llm_client: LLMClient = None, **kwargs):
self._llm_client = llm_client
MapOperator.__init__(self, **kwargs)
async def map(self, input_value: TriggerReqBody) -> Dict[str, Any]:
prompt_tokens = await self.llm_client.count_token(
input_value.model, input_value.messages
)
available_models = await self.llm_client.models()
return {
"prompt_tokens": prompt_tokens,
"available_models": available_models,
}
with DAG("dbgpt_awel_simple_llm_client_generate") as client_generate_dag:
# Receive http request and trigger dag to run.
trigger = HttpTrigger(
"/examples/simple_client/generate", methods="POST", request_body=TriggerReqBody
)
request_handle_task = RequestHandleOperator()
model_task = MyLLMOperator()
model_parse_task = MapOperator(lambda out: out.to_dict())
trigger >> request_handle_task >> model_task >> model_parse_task
with DAG("dbgpt_awel_simple_llm_client_generate_stream") as client_generate_stream_dag:
# Receive http request and trigger dag to run.
trigger = HttpTrigger(
"/examples/simple_client/generate_stream",
methods="POST",
request_body=TriggerReqBody,
streaming_response=True,
)
request_handle_task = RequestHandleOperator()
model_task = MyStreamingLLMOperator()
openai_format_stream_task = MyLLMStreamingOperator()
trigger >> request_handle_task >> model_task >> openai_format_stream_task
with DAG("dbgpt_awel_simple_llm_client_count_token") as client_count_token_dag:
# Receive http request and trigger dag to run.
trigger = HttpTrigger(
"/examples/simple_client/count_token",
methods="POST",
request_body=TriggerReqBody,
)
model_task = MyModelToolOperator()
trigger >> model_task