fix: merge conflicts

This commit is contained in:
csunny 2023-10-09 14:33:08 +08:00
commit 0d17f8920d
7 changed files with 22 additions and 20 deletions

View File

@ -112,13 +112,21 @@ DENYLISTED_PLUGINS=
#*******************************************************************# #*******************************************************************#
#** VECTOR STORE SETTINGS **# #** VECTOR STORE SETTINGS **#
#*******************************************************************# #*******************************************************************#
### Chroma vector db config
VECTOR_STORE_TYPE=Chroma VECTOR_STORE_TYPE=Chroma
#CHROMA_PERSIST_PATH=/root/DB-GPT/pilot/data
### Milvus vector db config
#VECTOR_STORE_TYPE=Milvus
#MILVUS_URL=127.0.0.1 #MILVUS_URL=127.0.0.1
#MILVUS_PORT=19530 #MILVUS_PORT=19530
#MILVUS_USERNAME #MILVUS_USERNAME
#MILVUS_PASSWORD #MILVUS_PASSWORD
#MILVUS_SECURE= #MILVUS_SECURE=
### Weaviate vector db config
#VECTOR_STORE_TYPE=Weaviate
#WEAVIATE_URL=https://kt-region-m8hcy0wc.weaviate.network
#*******************************************************************# #*******************************************************************#
#** WebServer Language Support **# #** WebServer Language Support **#

View File

@ -46,7 +46,6 @@ class ChatKnowledge(BaseChat):
vector_store_config = { vector_store_config = {
"vector_store_name": self.knowledge_space, "vector_store_name": self.knowledge_space,
"vector_store_type": CFG.VECTOR_STORE_TYPE, "vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
} }
embedding_factory = CFG.SYSTEM_APP.get_component( embedding_factory = CFG.SYSTEM_APP.get_component(
"embedding_factory", EmbeddingFactory "embedding_factory", EmbeddingFactory
@ -93,7 +92,7 @@ class ChatKnowledge(BaseChat):
context = [d.page_content for d in docs] context = [d.page_content for d in docs]
context = context[: self.max_token] context = context[: self.max_token]
relations = list( relations = list(
set([os.path.basename(d.metadata.get("source")) for d in docs]) set([os.path.basename(d.metadata.get("source", "")) for d in docs])
) )
input_values = { input_values = {
"context": context, "context": context,

View File

@ -239,7 +239,6 @@ class KnowledgeService:
vector_store_config={ vector_store_config={
"vector_store_name": space_name, "vector_store_name": space_name,
"vector_store_type": CFG.VECTOR_STORE_TYPE, "vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}, },
text_splitter=text_splitter, text_splitter=text_splitter,
embedding_factory=embedding_factory, embedding_factory=embedding_factory,

View File

@ -44,7 +44,6 @@ class DBSummaryClient:
vector_store_config = { vector_store_config = {
"vector_store_name": dbname + "_summary", "vector_store_name": dbname + "_summary",
"vector_store_type": CFG.VECTOR_STORE_TYPE, "vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"embeddings": embeddings, "embeddings": embeddings,
} }
embedding = StringEmbedding( embedding = StringEmbedding(
@ -73,7 +72,6 @@ class DBSummaryClient:
table_vector_store_config = { table_vector_store_config = {
"vector_store_name": dbname + "_" + table_name + "_ts", "vector_store_name": dbname + "_" + table_name + "_ts",
"vector_store_type": CFG.VECTOR_STORE_TYPE, "vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"embeddings": embeddings, "embeddings": embeddings,
} }
embedding = StringEmbedding( embedding = StringEmbedding(
@ -91,7 +89,6 @@ class DBSummaryClient:
vector_store_config = { vector_store_config = {
"vector_store_name": dbname + "_profile", "vector_store_name": dbname + "_profile",
"vector_store_type": CFG.VECTOR_STORE_TYPE, "vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
} }
embedding_factory = CFG.SYSTEM_APP.get_component( embedding_factory = CFG.SYSTEM_APP.get_component(
"embedding_factory", EmbeddingFactory "embedding_factory", EmbeddingFactory
@ -112,9 +109,7 @@ class DBSummaryClient:
vector_store_config = { vector_store_config = {
"vector_store_name": dbname + "_summary", "vector_store_name": dbname + "_summary",
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"vector_store_type": CFG.VECTOR_STORE_TYPE, "vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
} }
embedding_factory = CFG.SYSTEM_APP.get_component( embedding_factory = CFG.SYSTEM_APP.get_component(
"embedding_factory", EmbeddingFactory "embedding_factory", EmbeddingFactory
@ -142,9 +137,7 @@ class DBSummaryClient:
for table in related_tables: for table in related_tables:
vector_store_config = { vector_store_config = {
"vector_store_name": dbname + "_" + table + "_ts", "vector_store_name": dbname + "_" + table + "_ts",
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"vector_store_type": CFG.VECTOR_STORE_TYPE, "vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
} }
knowledge_embedding_client = EmbeddingEngine( knowledge_embedding_client = EmbeddingEngine(
model_name=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL], model_name=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
@ -172,7 +165,6 @@ class DBSummaryClient:
vector_store_name = dbname + "_profile" vector_store_name = dbname + "_profile"
profile_store_config = { profile_store_config = {
"vector_store_name": vector_store_name, "vector_store_name": vector_store_name,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"vector_store_type": CFG.VECTOR_STORE_TYPE, "vector_store_type": CFG.VECTOR_STORE_TYPE,
"embeddings": embeddings, "embeddings": embeddings,
} }

View File

@ -16,10 +16,13 @@ class ChromaStore(VectorStoreBase):
from langchain.vectorstores import Chroma from langchain.vectorstores import Chroma
self.ctx = ctx self.ctx = ctx
self.embeddings = ctx.get("embeddings", None) chroma_path = ctx.get(
self.persist_dir = os.path.join( "CHROMA_PERSIST_PATH", os.getenv("CHROMA_PERSIST_PATH", os.getcwd())
ctx["chroma_persist_path"], ctx["vector_store_name"] + ".vectordb"
) )
self.persist_dir = os.path.join(
chroma_path, ctx["vector_store_name"] + ".vectordb"
)
self.embeddings = ctx.get("embeddings", None)
chroma_settings = Settings( chroma_settings = Settings(
# chroma_db_impl="duckdb+parquet", => deprecated configuration of Chroma # chroma_db_impl="duckdb+parquet", => deprecated configuration of Chroma
persist_directory=self.persist_dir, persist_directory=self.persist_dir,

View File

@ -1,5 +1,6 @@
from __future__ import annotations from __future__ import annotations
import logging import logging
import os
from typing import Any, Iterable, List, Optional, Tuple from typing import Any, Iterable, List, Optional, Tuple
from pymilvus import Collection, DataType, connections, utility from pymilvus import Collection, DataType, connections, utility
@ -21,12 +22,12 @@ class MilvusStore(VectorStoreBase):
# self.configure(cfg) # self.configure(cfg)
connect_kwargs = {} connect_kwargs = {}
self.uri = ctx.get("milvus_url", None) self.uri = ctx.get("MILVUS_URL", os.getenv("MILVUS_URL"))
self.port = ctx.get("milvus_port", None) self.port = ctx.get("MILVUS_PORT", os.getenv("MILVUS_PORT"))
self.username = ctx.get("milvus_username", None) self.username = ctx.get("MILVUS_USERNAME", os.getenv("MILVUS_USERNAME"))
self.password = ctx.get("milvus_password", None) self.password = ctx.get("MILVUS_PASSWORD", os.getenv("MILVUS_PASSWORD"))
self.secure = ctx.get("MILVUS_SECURE", os.getenv("MILVUS_SECURE"))
self.collection_name = ctx.get("vector_store_name", None) self.collection_name = ctx.get("vector_store_name", None)
self.secure = ctx.get("secure", None)
self.embedding = ctx.get("embeddings", None) self.embedding = ctx.get("embeddings", None)
self.fields = [] self.fields = []
self.alias = "default" self.alias = "default"

View File

@ -28,7 +28,7 @@ class WeaviateStore(VectorStoreBase):
) )
self.ctx = ctx self.ctx = ctx
self.weaviate_url = CFG.WEAVIATE_URL self.weaviate_url = ctx.get("WEAVIATE_URL", os.getenv("WEAVIATE_URL"))
self.embedding = ctx.get("embeddings", None) self.embedding = ctx.get("embeddings", None)
self.vector_name = ctx["vector_store_name"] self.vector_name = ctx["vector_store_name"]
self.persist_dir = os.path.join( self.persist_dir = os.path.join(