mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-24 12:45:45 +00:00
feat(agent): add app starter role in mutli agent (#2265)
Co-authored-by: cinjospeh <joseph.cjn@alibaba-inc.com>
This commit is contained in:
parent
ad1e8e27a5
commit
0e3b2dc818
166
dbgpt/agent/resource/app.py
Normal file
166
dbgpt/agent/resource/app.py
Normal file
@ -0,0 +1,166 @@
|
||||
import dataclasses
|
||||
import uuid
|
||||
from typing import Optional, Tuple, Dict, Type, Any, List, cast
|
||||
|
||||
from dbgpt.agent import ConversableAgent, AgentMessage, AgentContext
|
||||
from dbgpt.serve.agent.agents.app_agent_manage import get_app_manager
|
||||
from dbgpt.util import ParameterDescription
|
||||
from .base import Resource, ResourceParameters, ResourceType
|
||||
|
||||
|
||||
def get_app_list():
|
||||
apps = get_app_manager().get_dbgpts()
|
||||
results = [
|
||||
{
|
||||
"label": f"{app.app_name}({app.app_code})",
|
||||
"key": app.app_code,
|
||||
"description": app.app_describe
|
||||
}
|
||||
for app in apps
|
||||
]
|
||||
return results
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class AppResourceParameters(ResourceParameters):
|
||||
app_code: str = dataclasses.field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "app code",
|
||||
"valid_values": get_app_list(),
|
||||
},
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def to_configurations(
|
||||
cls,
|
||||
parameters: Type["AppResourceParameters"],
|
||||
version: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> Any:
|
||||
"""Convert the parameters to configurations."""
|
||||
conf: List[ParameterDescription] = cast(
|
||||
List[ParameterDescription], super().to_configurations(parameters)
|
||||
)
|
||||
version = version or cls._resource_version()
|
||||
if version != "v1":
|
||||
return conf
|
||||
# Compatible with old version
|
||||
for param in conf:
|
||||
if param.param_name == "app_code":
|
||||
return param.valid_values or []
|
||||
return []
|
||||
|
||||
@classmethod
|
||||
def from_dict(
|
||||
cls, data: dict, ignore_extra_fields: bool = True
|
||||
) -> ResourceParameters:
|
||||
"""Create a new instance from a dictionary."""
|
||||
copied_data = data.copy()
|
||||
if "app_code" not in copied_data and "value" in copied_data:
|
||||
copied_data["app_code"] = copied_data.pop("value")
|
||||
return super().from_dict(copied_data, ignore_extra_fields=ignore_extra_fields)
|
||||
|
||||
|
||||
class AppResource(Resource[AppResourceParameters]):
|
||||
"""AppResource resource class."""
|
||||
|
||||
def __init__(self, name: str, app_code: str, **kwargs):
|
||||
self._resource_name = name
|
||||
self._app_code = app_code
|
||||
|
||||
app = get_app_manager().get_app(self._app_code)
|
||||
self._app_name = app.app_name
|
||||
self._app_desc = app.app_describe
|
||||
|
||||
@classmethod
|
||||
def type(cls) -> ResourceType:
|
||||
return ResourceType.App
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return self._resource_name
|
||||
|
||||
@classmethod
|
||||
def resource_parameters_class(cls, **kwargs) -> Type[ResourceParameters]:
|
||||
"""Return the resource parameters class."""
|
||||
return AppResourceParameters
|
||||
|
||||
async def get_prompt(self, *, lang: str = "en", prompt_type: str = "default", question: Optional[str] = None,
|
||||
resource_name: Optional[str] = None, **kwargs) -> Tuple[str, Optional[Dict]]:
|
||||
"""Get the prompt."""
|
||||
|
||||
prompt_template_zh = (
|
||||
"{name}:调用此资源与应用 {app_name} 进行交互。"
|
||||
"应用 {app_name} 有什么用?{description}"
|
||||
)
|
||||
prompt_template_en = (
|
||||
"{name}:Call this resource to interact with the application {app_name} ."
|
||||
"What is the application {app_name} useful for? {description} "
|
||||
)
|
||||
template = prompt_template_en if lang == "en" else prompt_template_zh
|
||||
|
||||
return (
|
||||
template.format(
|
||||
name=self.name,
|
||||
app_name=self._app_name,
|
||||
description=self._app_desc
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
@property
|
||||
def is_async(self) -> bool:
|
||||
"""Return whether the tool is asynchronous."""
|
||||
return True
|
||||
|
||||
async def execute(self, *args, resource_name: Optional[str] = None, **kwargs) -> Any:
|
||||
if self.is_async:
|
||||
raise RuntimeError("Async execution is not supported")
|
||||
|
||||
async def async_execute(
|
||||
self,
|
||||
*args,
|
||||
resource_name: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> Any:
|
||||
"""Execute the tool asynchronously.
|
||||
|
||||
Args:
|
||||
*args: The positional arguments.
|
||||
resource_name (str, optional): The tool name to be executed(not used for
|
||||
specific tool).
|
||||
**kwargs: The keyword arguments.
|
||||
"""
|
||||
|
||||
user_input = kwargs.get("user_input")
|
||||
parent_agent = kwargs.get("parent_agent")
|
||||
|
||||
reply_message = await self.chat_2_app_once(self._app_code, user_input=user_input, sender=parent_agent)
|
||||
return reply_message.content
|
||||
|
||||
async def chat_2_app_once(self,
|
||||
app_code: str,
|
||||
user_input: str,
|
||||
conv_uid: str = None,
|
||||
sender: ConversableAgent = None) -> AgentMessage:
|
||||
# create a new conv_uid
|
||||
conv_uid = str(uuid.uuid4()) if conv_uid is None else conv_uid
|
||||
|
||||
gpts_app = get_app_manager().get_app(app_code)
|
||||
|
||||
app_agent = await get_app_manager().create_agent_by_app_code(gpts_app, conv_uid=conv_uid)
|
||||
|
||||
agent_message = AgentMessage(
|
||||
content=user_input,
|
||||
current_goal=user_input,
|
||||
context={
|
||||
"conv_uid": conv_uid,
|
||||
},
|
||||
rounds=0,
|
||||
)
|
||||
|
||||
reply_message: AgentMessage = await app_agent.generate_reply(received_message=agent_message,
|
||||
sender=sender)
|
||||
|
||||
return reply_message
|
@ -28,6 +28,7 @@ class ResourceType(str, Enum):
|
||||
ExcelFile = "excel_file"
|
||||
ImageFile = "image_file"
|
||||
AWELFlow = "awel_flow"
|
||||
App = "app"
|
||||
# Resource type for resource pack
|
||||
Pack = "pack"
|
||||
|
||||
|
@ -111,12 +111,14 @@ def _initialize_resource_manager(system_app: SystemApp):
|
||||
from dbgpt.serve.agent.resource.datasource import DatasourceResource
|
||||
from dbgpt.serve.agent.resource.knowledge import KnowledgeSpaceRetrieverResource
|
||||
from dbgpt.serve.agent.resource.plugin import PluginToolPack
|
||||
from dbgpt.agent.resource.app import AppResource
|
||||
|
||||
initialize_resource(system_app)
|
||||
rm = get_resource_manager(system_app)
|
||||
rm.register_resource(DatasourceResource)
|
||||
rm.register_resource(KnowledgeSpaceRetrieverResource)
|
||||
rm.register_resource(PluginToolPack, resource_type=ResourceType.Tool)
|
||||
rm.register_resource(AppResource)
|
||||
# Register a search tool
|
||||
rm.register_resource(resource_instance=baidu_search)
|
||||
rm.register_resource(resource_instance=list_dbgpt_support_models)
|
||||
|
276
dbgpt/serve/agent/agents/app_agent_manage.py
Normal file
276
dbgpt/serve/agent/agents/app_agent_manage.py
Normal file
@ -0,0 +1,276 @@
|
||||
import logging
|
||||
import uuid
|
||||
from abc import ABC
|
||||
from typing import List, Type
|
||||
|
||||
from dbgpt.agent import (
|
||||
AgentContext,
|
||||
AgentMemory,
|
||||
ConversableAgent,
|
||||
DefaultAWELLayoutManager,
|
||||
GptsMemory,
|
||||
LLMConfig,
|
||||
UserProxyAgent, get_agent_manager,
|
||||
)
|
||||
from dbgpt.agent.core.schema import Status
|
||||
from dbgpt.agent.resource import get_resource_manager
|
||||
from dbgpt.agent.util.llm.llm import LLMStrategyType
|
||||
from dbgpt.app.component_configs import CFG
|
||||
from dbgpt.component import BaseComponent, ComponentType, SystemApp
|
||||
from dbgpt.core import LLMClient
|
||||
from dbgpt.core import PromptTemplate
|
||||
from dbgpt.model.cluster import WorkerManagerFactory
|
||||
from dbgpt.model.cluster.client import DefaultLLMClient
|
||||
from dbgpt.serve.prompt.api.endpoints import get_service
|
||||
from .db_gpts_memory import MetaDbGptsMessageMemory, MetaDbGptsPlansMemory
|
||||
from ..db import GptsMessagesDao
|
||||
from ..db.gpts_app import GptsApp, GptsAppDao, GptsAppQuery
|
||||
from ..db.gpts_app import GptsAppDetail
|
||||
from ..db.gpts_conversations_db import GptsConversationsDao
|
||||
from ..team.base import TeamMode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AppManager(BaseComponent, ABC):
|
||||
name = "dbgpt_agent_app_manager"
|
||||
|
||||
def __init__(self, system_app: SystemApp):
|
||||
self.gpts_conversations = GptsConversationsDao()
|
||||
self.gpts_messages_dao = GptsMessagesDao()
|
||||
|
||||
self.gpts_app = GptsAppDao()
|
||||
self.memory = GptsMemory(
|
||||
plans_memory=MetaDbGptsPlansMemory(),
|
||||
message_memory=MetaDbGptsMessageMemory(),
|
||||
)
|
||||
self.agent_memory_map = {}
|
||||
|
||||
super().__init__(system_app)
|
||||
self.system_app = system_app
|
||||
|
||||
def init_app(self, system_app: SystemApp):
|
||||
self.system_app = system_app
|
||||
|
||||
def get_dbgpts(self, user_code: str = None, sys_code: str = None):
|
||||
apps = self.gpts_app.app_list(
|
||||
GptsAppQuery(user_code=user_code, sys_code=sys_code)
|
||||
).app_list
|
||||
return apps
|
||||
|
||||
def get_app(self, app_code) -> GptsApp:
|
||||
"""get app"""
|
||||
return self.gpts_app.app_detail(app_code)
|
||||
|
||||
async def user_chat_2_app(
|
||||
self,
|
||||
user_query: str,
|
||||
conv_uid: str,
|
||||
gpts_app: GptsApp,
|
||||
agent_memory: AgentMemory,
|
||||
is_retry_chat: bool = False,
|
||||
last_speaker_name: str = None,
|
||||
init_message_rounds: int = 0,
|
||||
enable_verbose: bool = True,
|
||||
**ext_info,
|
||||
) -> Status:
|
||||
context: AgentContext = AgentContext(
|
||||
conv_id=conv_uid,
|
||||
gpts_app_code=gpts_app.app_code,
|
||||
gpts_app_name=gpts_app.app_name,
|
||||
language=gpts_app.language,
|
||||
enable_vis_message=enable_verbose,
|
||||
)
|
||||
recipient = await self.create_app_agent(gpts_app, agent_memory, context)
|
||||
|
||||
if is_retry_chat:
|
||||
# retry chat
|
||||
self.gpts_conversations.update(conv_uid, Status.RUNNING.value)
|
||||
|
||||
# start user proxy
|
||||
user_proxy: UserProxyAgent = (
|
||||
await UserProxyAgent().bind(context).bind(agent_memory).build()
|
||||
)
|
||||
await user_proxy.initiate_chat(
|
||||
recipient=recipient,
|
||||
message=user_query,
|
||||
is_retry_chat=is_retry_chat,
|
||||
last_speaker_name=last_speaker_name,
|
||||
message_rounds=init_message_rounds,
|
||||
**ext_info,
|
||||
)
|
||||
|
||||
# Check if the user has received a question.
|
||||
if user_proxy.have_ask_user():
|
||||
return Status.WAITING
|
||||
|
||||
return Status.COMPLETE
|
||||
|
||||
async def create_app_agent(
|
||||
self,
|
||||
gpts_app: GptsApp,
|
||||
agent_memory: AgentMemory,
|
||||
context: AgentContext,
|
||||
) -> ConversableAgent:
|
||||
# init default llm provider
|
||||
llm_provider = DefaultLLMClient(
|
||||
self.system_app.get_component(ComponentType.WORKER_MANAGER_FACTORY, WorkerManagerFactory).create(),
|
||||
auto_convert_message=True
|
||||
)
|
||||
|
||||
# init team employees
|
||||
# TODO employee has it own llm provider
|
||||
employees: List[ConversableAgent] = []
|
||||
for record in gpts_app.details:
|
||||
agent = (await create_agent_from_gpt_detail(record, llm_provider, context, agent_memory))
|
||||
agent.name_prefix = gpts_app.app_name
|
||||
employees.append(agent)
|
||||
|
||||
app_agent: ConversableAgent = (
|
||||
await create_agent_of_gpts_app(gpts_app,
|
||||
llm_provider,
|
||||
context,
|
||||
agent_memory,
|
||||
employees)
|
||||
)
|
||||
app_agent.name_prefix = gpts_app.app_name
|
||||
return app_agent
|
||||
|
||||
async def create_agent_by_app_code(
|
||||
self,
|
||||
gpts_app: GptsApp,
|
||||
conv_uid: str = None,
|
||||
agent_memory: AgentMemory = None,
|
||||
context: AgentContext = None,
|
||||
) -> ConversableAgent:
|
||||
"""
|
||||
Create a conversable agent by application code.
|
||||
|
||||
Parameters:
|
||||
gpts_app (str): The application.
|
||||
conv_uid (str, optional): The unique identifier of the conversation, default is None. If not provided, a new UUID will be generated.
|
||||
agent_memory (AgentMemory, optional): The memory object for the agent, default is None. If not provided, a default memory object will be created.
|
||||
context (AgentContext, optional): The context object for the agent, default is None. If not provided, a default context object will be created.
|
||||
|
||||
Returns:
|
||||
ConversableAgent: The created conversable agent object.
|
||||
"""
|
||||
conv_uid = str(uuid.uuid4()) if conv_uid is None else conv_uid
|
||||
|
||||
from dbgpt.agent.core.memory.gpts import DefaultGptsPlansMemory, DefaultGptsMessageMemory
|
||||
|
||||
if agent_memory is None:
|
||||
gpt_memory = GptsMemory(
|
||||
plans_memory=DefaultGptsPlansMemory(),
|
||||
message_memory=DefaultGptsMessageMemory(),
|
||||
)
|
||||
gpt_memory.init(conv_uid)
|
||||
agent_memory = AgentMemory(gpts_memory=gpt_memory)
|
||||
|
||||
if context is None:
|
||||
context: AgentContext = AgentContext(
|
||||
conv_id=conv_uid,
|
||||
gpts_app_code=gpts_app.app_code,
|
||||
gpts_app_name=gpts_app.app_name,
|
||||
language=gpts_app.language,
|
||||
enable_vis_message=False,
|
||||
)
|
||||
context.gpts_app_code = gpts_app.app_code
|
||||
context.gpts_app_name = gpts_app.app_name
|
||||
context.language = gpts_app.language
|
||||
|
||||
agent: ConversableAgent = (
|
||||
await self.create_app_agent(gpts_app, agent_memory, context)
|
||||
)
|
||||
return agent
|
||||
|
||||
|
||||
async def create_agent_from_gpt_detail(
|
||||
record: GptsAppDetail,
|
||||
llm_client: LLMClient,
|
||||
agent_context: AgentContext,
|
||||
agent_memory: AgentMemory) -> ConversableAgent:
|
||||
"""
|
||||
Get the agent object from the GPTsAppDetail object.
|
||||
"""
|
||||
agent_manager = get_agent_manager()
|
||||
agent_cls: Type[ConversableAgent] = agent_manager.get_by_name(
|
||||
record.agent_name
|
||||
)
|
||||
llm_config = LLMConfig(
|
||||
llm_client=llm_client,
|
||||
llm_strategy=LLMStrategyType(record.llm_strategy),
|
||||
strategy_context=record.llm_strategy_value,
|
||||
)
|
||||
prompt_template = None
|
||||
if record.prompt_template:
|
||||
prompt_template: PromptTemplate = get_service().get_template(
|
||||
prompt_code=record.prompt_template
|
||||
)
|
||||
|
||||
depend_resource = get_resource_manager().build_resource(record.resources, version="v1")
|
||||
|
||||
agent = (await agent_cls()
|
||||
.bind(agent_context)
|
||||
.bind(agent_memory)
|
||||
.bind(llm_config)
|
||||
.bind(depend_resource)
|
||||
.bind(prompt_template)
|
||||
.build())
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
async def create_agent_of_gpts_app(
|
||||
gpts_app: GptsApp,
|
||||
llm_client: LLMClient,
|
||||
context: AgentContext,
|
||||
memory: AgentMemory,
|
||||
employees: List[ConversableAgent],
|
||||
) -> ConversableAgent:
|
||||
llm_config = LLMConfig(
|
||||
llm_client=llm_client,
|
||||
llm_strategy=LLMStrategyType.Default,
|
||||
)
|
||||
|
||||
awel_team_context = gpts_app.team_context
|
||||
|
||||
team_mode = TeamMode(gpts_app.team_mode)
|
||||
if team_mode == TeamMode.SINGLE_AGENT:
|
||||
agent_of_app: ConversableAgent = employees[0]
|
||||
else:
|
||||
if TeamMode.AUTO_PLAN == team_mode:
|
||||
if not employees or len(employees) < 0:
|
||||
raise ValueError("APP exception no available agent!")
|
||||
from dbgpt.agent.v2 import AutoPlanChatManagerV2, MultiAgentTeamPlanner
|
||||
planner = MultiAgentTeamPlanner()
|
||||
planner.name_prefix = gpts_app.app_name
|
||||
manager = AutoPlanChatManagerV2(planner)
|
||||
manager.name_prefix = gpts_app.app_name
|
||||
elif TeamMode.AWEL_LAYOUT == team_mode:
|
||||
if not awel_team_context:
|
||||
raise ValueError(
|
||||
"Your APP has not been developed yet, please bind Flow!"
|
||||
)
|
||||
manager = DefaultAWELLayoutManager(dag=awel_team_context)
|
||||
elif TeamMode.NATIVE_APP == team_mode:
|
||||
raise ValueError(f"Native APP chat not supported!")
|
||||
else:
|
||||
raise ValueError(f"Unknown Agent Team Mode!{team_mode}")
|
||||
manager = (
|
||||
await manager.bind(context)
|
||||
.bind(memory)
|
||||
.bind(llm_config)
|
||||
.build()
|
||||
)
|
||||
manager.hire(employees)
|
||||
agent_of_app: ConversableAgent = manager
|
||||
|
||||
return agent_of_app
|
||||
|
||||
|
||||
def get_app_manager() -> AppManager:
|
||||
return app_manager
|
||||
|
||||
|
||||
app_manager = AppManager(CFG.SYSTEM_APP)
|
@ -0,0 +1,6 @@
|
||||
from dbgpt.serve.agent.agents.expand.app_resource_start_assisant_agent import AppStarterAgent
|
||||
|
||||
__all__ = [
|
||||
"AppStarterAgent",
|
||||
]
|
||||
|
@ -0,0 +1,220 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Dict, List
|
||||
from typing import Optional
|
||||
|
||||
from dbgpt._private.pydantic import BaseModel, Field
|
||||
from dbgpt.agent import Action, ActionOutput, AgentResource, AgentMessage, ResourceType
|
||||
from dbgpt.agent import (
|
||||
Agent,
|
||||
ConversableAgent,
|
||||
get_agent_manager,
|
||||
)
|
||||
from dbgpt.agent.core.profile import DynConfig, ProfileConfig
|
||||
from dbgpt.agent.resource.app import AppResource
|
||||
from dbgpt.vis.tags.vis_plugin import Vis, VisPlugin
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AppResourceInput(BaseModel):
|
||||
"""Plugin input model."""
|
||||
|
||||
app_name: str = Field(
|
||||
...,
|
||||
description="The name of a application that can be used to answer the current question"
|
||||
" or solve the current task.",
|
||||
)
|
||||
|
||||
app_query: str = Field(
|
||||
...,
|
||||
description="The query to the selected application",
|
||||
)
|
||||
|
||||
|
||||
class AppResourceAction(Action[AppResourceInput]):
|
||||
"""AppResource action class."""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""App action init."""
|
||||
super().__init__(**kwargs)
|
||||
self._render_protocol = VisPlugin()
|
||||
|
||||
@property
|
||||
def resource_need(self) -> Optional[ResourceType]:
|
||||
"""Return the resource type needed for the action."""
|
||||
return ResourceType.App
|
||||
|
||||
@property
|
||||
def render_protocol(self) -> Optional[Vis]:
|
||||
"""Return the render protocol."""
|
||||
return self._render_protocol
|
||||
|
||||
@property
|
||||
def out_model_type(self):
|
||||
"""Return the output model type."""
|
||||
return AppResourceInput
|
||||
|
||||
@property
|
||||
def ai_out_schema(self) -> Optional[str]:
|
||||
"""Return the AI output schema."""
|
||||
out_put_schema = {
|
||||
"app_name": "the agent name you selected",
|
||||
"app_query": "the query to the selected agent, must input a str, base on the natural language "
|
||||
}
|
||||
|
||||
return f"""Please response in the following json format:
|
||||
{json.dumps(out_put_schema, indent=2, ensure_ascii=False)}
|
||||
Make sure the response is correct json and can be parsed by Python json.loads.
|
||||
"""
|
||||
|
||||
async def run(
|
||||
self,
|
||||
ai_message: str,
|
||||
resource: Optional[AgentResource] = None,
|
||||
rely_action_out: Optional[ActionOutput] = None,
|
||||
need_vis_render: bool = True,
|
||||
**kwargs,
|
||||
) -> ActionOutput:
|
||||
"""Perform the plugin action.
|
||||
|
||||
Args:
|
||||
ai_message (str): The AI message.
|
||||
resource (Optional[AgentResource], optional): The resource. Defaults to
|
||||
None.
|
||||
rely_action_out (Optional[ActionOutput], optional): The rely action output.
|
||||
Defaults to None.
|
||||
need_vis_render (bool, optional): Whether need visualization rendering.
|
||||
Defaults to True.
|
||||
"""
|
||||
try:
|
||||
response_success = True
|
||||
err_msg = None
|
||||
app_result = None
|
||||
try:
|
||||
param: AppResourceInput = self._input_convert(ai_message, AppResourceInput)
|
||||
except Exception as e:
|
||||
logger.exception((str(e)))
|
||||
return ActionOutput(
|
||||
is_exe_success=False,
|
||||
content="The requested correctly structured answer could not be found.",
|
||||
)
|
||||
|
||||
app_resource = self.__get_app_resource_of_app_name(param.app_name)
|
||||
try:
|
||||
user_input = param.app_query
|
||||
parent_agent = kwargs.get("parent_agent")
|
||||
app_result = await app_resource.async_execute(
|
||||
user_input=user_input,
|
||||
parent_agent=parent_agent,
|
||||
)
|
||||
except Exception as e:
|
||||
response_success = False
|
||||
err_msg = f"App [{param.app_name}] execute failed! {str(e)}"
|
||||
logger.exception(err_msg)
|
||||
|
||||
return ActionOutput(
|
||||
is_exe_success=response_success,
|
||||
content=str(app_result),
|
||||
# view=self.__get_plugin_view(param, app_result, err_msg),
|
||||
view=str(app_result),
|
||||
observations=str(app_result),
|
||||
)
|
||||
except Exception as e:
|
||||
logger.exception("App Action Run Failed!")
|
||||
return ActionOutput(
|
||||
is_exe_success=False, content=f"App action run failed!{str(e)}"
|
||||
)
|
||||
|
||||
async def __get_plugin_view(self, param: AppResourceInput, app_result: Any, err_msg: str):
|
||||
if not self.render_protocol:
|
||||
return None
|
||||
# raise NotImplementedError("The render_protocol should be implemented.")
|
||||
plugin_param = {
|
||||
"name": param.tool_name,
|
||||
"args": param.args,
|
||||
"logo": None,
|
||||
"result": str(app_result),
|
||||
"err_msg": err_msg,
|
||||
}
|
||||
view = await self.render_protocol.display(content=plugin_param)
|
||||
|
||||
def __get_app_resource_list(self) -> List[AppResource]:
|
||||
app_resource_list: List[AppResource] = []
|
||||
if self.resource.type() == ResourceType.Pack:
|
||||
for sub_resource in self.resource.sub_resources:
|
||||
if sub_resource.type() == ResourceType.App:
|
||||
app_resource_list.extend(AppResource.from_resource(sub_resource))
|
||||
if self.resource.type() == ResourceType.App:
|
||||
app_resource_list.extend(AppResource.from_resource(self.resource))
|
||||
return app_resource_list
|
||||
|
||||
def __get_app_resource_of_app_name(self, app_name: str):
|
||||
app_resource_list: List[AppResource] = self.__get_app_resource_list()
|
||||
if app_resource_list is None or len(app_resource_list) == 0:
|
||||
raise ValueError("No app resource was found!")
|
||||
|
||||
for app_resource in app_resource_list:
|
||||
if app_resource._app_name == app_name:
|
||||
return app_resource
|
||||
|
||||
raise ValueError(f"App {app_name} not found !")
|
||||
|
||||
|
||||
class AppStarterAgent(ConversableAgent):
|
||||
profile: ProfileConfig = ProfileConfig(
|
||||
name=DynConfig(
|
||||
"AppStarter",
|
||||
category="agent",
|
||||
key="dbgpt_ant_agent_agents_app_resource_starter_assistant_agent_profile_name",
|
||||
),
|
||||
role=DynConfig(
|
||||
"App Starter",
|
||||
category="agent",
|
||||
key="dbgpt_ant_agent_agents_app_resource_starter_assistant_agent_profile_role",
|
||||
),
|
||||
goal=DynConfig(
|
||||
"根据用户的问题和提供的应用信息,从已知资源中选择一个合适的应用来解决和回答用户的问题,并提取用户输入的关键信息到应用意图的槽位中。",
|
||||
category="agent",
|
||||
key="dbgpt_ant_agent_agents_app_resource_starter_assistant_agent_profile_goal",
|
||||
),
|
||||
constraints=DynConfig(
|
||||
[
|
||||
"请一步一步思考参为用户问题选择一个最匹配的应用来进行用户问题回答,可参考给出示例的应用选择逻辑.",
|
||||
"请阅读用户问题,确定问题所属领域和问题意图,按领域和意图匹配应用,如果用户问题意图缺少操作类应用需要的参数,优先使用咨询类型应用,有明确操作目标才使用操作类应用.",
|
||||
"必须从已知的应用中选出一个可用的应用来进行回答,不要瞎编应用的名称",
|
||||
"仅选择可回答问题的应用即可,不要直接回答用户问题.",
|
||||
"如果用户的问题和提供的所有应用全都不相关,则应用code和name都输出为空",
|
||||
"注意应用意图定义中如果有槽位信息,再次阅读理解用户输入信息,将对应的内容填入对应槽位参数定义中.",
|
||||
],
|
||||
category="agent",
|
||||
key="dbgpt_ant_agent_agents_app_resource_starter_assistant_agent_profile_constraints",
|
||||
),
|
||||
desc=DynConfig(
|
||||
"根据用户问题匹配合适的应用来进行回答.",
|
||||
category="agent",
|
||||
key="dbgpt_ant_agent_agents_app_resource_starter_assistant_agent_profile_desc",
|
||||
),
|
||||
)
|
||||
stream_out: bool = False
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self._init_actions([AppResourceAction])
|
||||
|
||||
def prepare_act_param(
|
||||
self,
|
||||
received_message: Optional[AgentMessage],
|
||||
sender: Agent,
|
||||
rely_messages: Optional[List[AgentMessage]] = None,
|
||||
**kwargs,
|
||||
) -> Dict[str, Any]:
|
||||
return {
|
||||
"user_input": received_message.content,
|
||||
"conv_id": self.agent_context.conv_id,
|
||||
"parent_agent": self,
|
||||
}
|
||||
|
||||
|
||||
agent_manage = get_agent_manager()
|
||||
agent_manage.register_agent(AppStarterAgent)
|
Loading…
Reference in New Issue
Block a user