Support 8-bit quantization and 4-bit quantization (#399)

Close #389 

**Some extra features:**
1. Configure the maximum memory used by each GPU
2. Unified model loading entry(for huggingface, llama.cpp, etc. )
3. Enhance docker image building
This commit is contained in:
magic.chen 2023-08-03 13:54:55 +08:00 committed by GitHub
commit 1388f33ddc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 419 additions and 127 deletions

View File

@ -27,6 +27,8 @@ MODEL_SERVER=http://127.0.0.1:8000
LIMIT_MODEL_CONCURRENCY=5
MAX_POSITION_EMBEDDINGS=4096
QUANTIZE_QLORA=True
QUANTIZE_8bit=True
# QUANTIZE_4bit=False
## SMART_LLM_MODEL - Smart language model (Default: vicuna-13b)
## FAST_LLM_MODEL - Fast language model (Default: chatglm-6b)
# SMART_LLM_MODEL=vicuna-13b
@ -125,11 +127,15 @@ PROXY_SERVER_URL=https://api.openai.com/v1/chat/completions
BARD_PROXY_API_KEY={your-bard-token}
#*******************************************************************#
# ** SUMMARY_CONFIG
#** SUMMARY_CONFIG **#
#*******************************************************************#
SUMMARY_CONFIG=FAST
#*******************************************************************#
# ** MUlti-GPU
#** MUlti-GPU **#
#*******************************************************************#
NUM_GPUS = 1
## See https://developer.nvidia.com/blog/cuda-pro-tip-control-gpu-visibility-cuda_visible_devices/
## If CUDA_VISIBLE_DEVICES is not configured, all available gpus will be used
# CUDA_VISIBLE_DEVICES=0
## You can configure the maximum memory used by each GPU.
# MAX_GPU_MEMORY=16Gib

View File

@ -1,25 +1,48 @@
FROM nvidia/cuda:11.8.0-devel-ubuntu22.04
ARG BASE_IMAGE="nvidia/cuda:11.8.0-devel-ubuntu22.04"
FROM ${BASE_IMAGE}
ARG BASE_IMAGE
RUN apt-get update && apt-get install -y git python3 pip wget \
&& apt-get clean
# download code from githu: https://github.com/csunny/DB-GPT
# ENV DBGPT_VERSION="v0.3.3"
# RUN wget https://github.com/csunny/DB-GPT/archive/refs/tags/$DBGPT_VERSION.zip
ARG BUILD_LOCAL_CODE="false"
ARG LANGUAGE="en"
ARG PIP_INDEX_URL="https://pypi.org/simple"
ENV PIP_INDEX_URL=$PIP_INDEX_URL
# clone latest code, and rename to /app
RUN git clone https://github.com/csunny/DB-GPT.git /app
# COPY only requirements.txt first to leverage Docker cache
COPY ./requirements.txt /tmp/requirements.txt
WORKDIR /app
RUN pip3 install --upgrade pip \
&& pip3 install --no-cache-dir -r requirements.txt \
&& pip3 install seaborn mpld3 \
&& wget https://github.com/explosion/spacy-models/releases/download/zh_core_web_sm-3.5.0/zh_core_web_sm-3.5.0-py3-none-any.whl -O /tmp/zh_core_web_sm-3.5.0-py3-none-any.whl \
&& pip3 install /tmp/zh_core_web_sm-3.5.0-py3-none-any.whl \
&& rm /tmp/zh_core_web_sm-3.5.0-py3-none-any.whl \
&& rm -rf `pip3 cache dir`
RUN pip3 install --upgrade pip -i $PIP_INDEX_URL \
&& (if [ "${BUILD_LOCAL_CODE}" = "false" ]; \
# if not build local code, clone latest code from git, and rename to /app, TODO: download by version, like: https://github.com/eosphoros-ai/DB-GPT/archive/refs/tags/$DBGPT_VERSION.zip
then git clone https://github.com/eosphoros-ai/DB-GPT.git /app \
&& cp /app/requirements.txt /tmp/requirements.txt; \
fi;) \
&& pip3 install -r /tmp/requirements.txt -i $PIP_INDEX_URL --no-cache-dir \
&& rm /tmp/requirements.txt
# RUN python3 -m spacy download zh_core_web_sm
RUN (if [ "${LANGUAGE}" = "zh" ]; \
# language is zh, download zh_core_web_sm from github
then wget https://github.com/explosion/spacy-models/releases/download/zh_core_web_sm-3.5.0/zh_core_web_sm-3.5.0-py3-none-any.whl -O /tmp/zh_core_web_sm-3.5.0-py3-none-any.whl \
&& pip3 install /tmp/zh_core_web_sm-3.5.0-py3-none-any.whl -i $PIP_INDEX_URL \
&& rm /tmp/zh_core_web_sm-3.5.0-py3-none-any.whl; \
# not zh, download directly
else python3 -m spacy download zh_core_web_sm; \
fi;) \
&& rm -rf `pip3 cache dir`
ARG BUILD_LOCAL_CODE="false"
# COPY the rest of the app
COPY . /tmp/app
# TODONeed to find a better way to determine whether to build docker image with local code.
RUN (if [ "${BUILD_LOCAL_CODE}" = "true" ]; \
then mv /tmp/app / && rm -rf /app/logs && rm -rf /app/pilot/data && rm -rf /app/pilot/message; \
else rm -rf /tmp/app; \
fi;)
EXPOSE 5000

View File

@ -4,5 +4,72 @@ SCRIPT_LOCATION=$0
cd "$(dirname "$SCRIPT_LOCATION")"
WORK_DIR=$(pwd)
BASE_IMAGE="nvidia/cuda:11.8.0-devel-ubuntu22.04"
IMAGE_NAME="db-gpt"
docker build -f Dockerfile -t $IMAGE_NAME $WORK_DIR/../../
# zh: https://pypi.tuna.tsinghua.edu.cn/simple
PIP_INDEX_URL="https://pypi.org/simple"
# en or zh
LANGUAGE="en"
BUILD_LOCAL_CODE="false"
usage () {
echo "USAGE: $0 [--base-image nvidia/cuda:11.8.0-devel-ubuntu22.04] [--image-name db-gpt]"
echo " [-b|--base-image base image name] Base image name"
echo " [-n|--image-name image name] Current image name, default: db-gpt"
echo " [-i|--pip-index-url pip index url] Pip index url, default: https://pypi.org/simple"
echo " [--language en or zh] You language, default: en"
echo " [--build-local-code true or false] Whether to use the local project code to package the image, default: false"
echo " [-h|--help] Usage message"
}
while [[ $# -gt 0 ]]; do
key="$1"
case $key in
-b|--base-image)
BASE_IMAGE="$2"
shift # past argument
shift # past value
;;
-n|--image-name)
IMAGE_NAME="$2"
shift # past argument
shift # past value
;;
-i|--pip-index-url)
PIP_INDEX="$2"
shift
shift
;;
--language)
LANGUAGE="$2"
shift
shift
;;
--build-local-code)
BUILD_LOCAL_CODE="$2"
shift
shift
;;
-h|--help)
help="true"
shift
;;
*)
usage
exit 1
;;
esac
done
if [[ $help ]]; then
usage
exit 0
fi
docker build \
--build-arg BASE_IMAGE=$BASE_IMAGE \
--build-arg PIP_INDEX_URL=$PIP_INDEX_URL \
--build-arg LANGUAGE=$LANGUAGE \
--build-arg BUILD_LOCAL_CODE=$BUILD_LOCAL_CODE \
-f Dockerfile \
-t $IMAGE_NAME $WORK_DIR/../../

View File

@ -4,6 +4,11 @@ SCRIPT_LOCATION=$0
cd "$(dirname "$SCRIPT_LOCATION")"
WORK_DIR=$(pwd)
bash $WORK_DIR/base/build_image.sh
bash $WORK_DIR/base/build_image.sh "$@"
if [ 0 -ne $? ]; then
ehco "Error: build base image failed"
exit 1
fi
bash $WORK_DIR/allinone/build_image.sh

View File

@ -80,26 +80,11 @@ Open http://localhost:5000 with your browser to see the product.
If you want to access an external LLM service, you need to 1.set the variables LLM_MODEL=YOUR_MODEL_NAME MODEL_SERVER=YOUR_MODEL_SERVEReg:http://localhost:5000 in the .env file.
2.execute dbgpt_server.py in light mode
If you want to learn about dbgpt-webui, read https://github./csunny/DB-GPT/tree/new-page-framework/datacenter
```bash
$ python pilot/server/dbgpt_server.py --light
```
#### 3.1 Steps for Starting ChatGLM-6B and ChatGLM2-6B with Multiple Cards
Modify the. env.template or pilot/configurations/config.py file NUM_ Number of GPUS (quantity is the actual number of graphics cards required for startup)
At the same time, it is necessary to specify the required gpu card ID before starting the command (note that the number of gpu cards specified is consistent with the number of NUM_GPUS), as shown below:
````shell
# Specify 1 gpu card
NUM_GPUS = 1
CUDA_VISIBLE_DEVICES=0 python3 pilot/server/dbgpt_server.py
# Specify 4 gpus card
NUM_GPUS = 4
CUDA_VISIBLE_DEVICES=3,4,5,6 python3 pilot/server/dbgpt_server.py
````
If you want to learn about dbgpt-webui, read https://github.com/csunny/DB-GPT/tree/new-page-framework/datacenter
### 4. Docker (Experimental)
@ -196,3 +181,28 @@ $ docker logs db-gpt-webserver-1 -f
Open http://localhost:5000 with your browser to see the product.
You can open docker-compose.yml in the project root directory to see more details.
### 5. Multiple GPUs
DB-GPT will use all available gpu by default. And you can modify the setting `CUDA_VISIBLE_DEVICES=0,1` in `.env` file to use the specific gpu IDs.
Optionally, you can also specify the gpu ID to use before the starting command, as shown below:
````shell
# Specify 1 gpu
CUDA_VISIBLE_DEVICES=0 python3 pilot/server/dbgpt_server.py
# Specify 4 gpus
CUDA_VISIBLE_DEVICES=3,4,5,6 python3 pilot/server/dbgpt_server.py
````
### 6. Not Enough Memory
DB-GPT supported 8-bit quantization and 4-bit quantization.
You can modify the setting `QUANTIZE_8bit=True` or `QUANTIZE_4bit=True` in `.env` file to use quantization(8-bit quantization is enabled by default).
Llama-2-70b with 8-bit quantization can run with 80 GB of VRAM, and 4-bit quantization can run with 48 GB of VRAM.
Note: you need to install the latest dependencies according to [requirements.txt](https://github.com/eosphoros-ai/DB-GPT/blob/main/requirements.txt).

View File

@ -29,7 +29,7 @@ class Config(metaclass=Singleton):
self.skip_reprompt = False
self.temperature = float(os.getenv("TEMPERATURE", 0.7))
self.NUM_GPUS = int(os.getenv("NUM_GPUS", 1))
# self.NUM_GPUS = int(os.getenv("NUM_GPUS", 1))
self.execute_local_commands = (
os.getenv("EXECUTE_LOCAL_COMMANDS", "False") == "True"
@ -145,7 +145,6 @@ class Config(metaclass=Singleton):
self.MODEL_SERVER = os.getenv(
"MODEL_SERVER", "http://127.0.0.1" + ":" + str(self.MODEL_PORT)
)
self.ISLOAD_8BIT = os.getenv("ISLOAD_8BIT", "True") == "True"
### Vector Store Configuration
self.VECTOR_STORE_TYPE = os.getenv("VECTOR_STORE_TYPE", "Chroma")
@ -156,6 +155,10 @@ class Config(metaclass=Singleton):
# QLoRA
self.QLoRA = os.getenv("QUANTIZE_QLORA", "True")
self.IS_LOAD_8BIT = bool(os.getenv("QUANTIZE_8bit", "True"))
self.IS_LOAD_4BIT = bool(os.getenv("QUANTIZE_4bit", "False"))
if self.IS_LOAD_8BIT and self.IS_LOAD_4BIT:
self.IS_LOAD_8BIT = False
### EMBEDDING Configuration
self.EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL", "text2vec")
@ -164,6 +167,8 @@ class Config(metaclass=Singleton):
### SUMMARY_CONFIG Configuration
self.SUMMARY_CONFIG = os.getenv("SUMMARY_CONFIG", "FAST")
self.MAX_GPU_MEMORY = os.getenv("MAX_GPU_MEMORY", None)
def set_debug_mode(self, value: bool) -> None:
"""Set the debug mode value"""
self.debug_mode = value

View File

@ -62,7 +62,6 @@ LLM_MODEL_CONFIG = {
}
# Load model config
ISLOAD_8BIT = True
ISDEBUG = False
VECTOR_SEARCH_TOP_K = 10

View File

@ -247,7 +247,7 @@ def remove_color_codes(s: str) -> str:
return ansi_escape.sub("", s)
logger = Logger()
logger: Logger = Logger()
def print_assistant_thoughts(

View File

@ -28,6 +28,9 @@ class BaseLLMAdaper:
"""The Base class for multi model, in our project.
We will support those model, which performance resemble ChatGPT"""
def use_fast_tokenizer(self) -> bool:
return False
def match(self, model_path: str):
return True
@ -115,13 +118,7 @@ class ChatGLMAdapater(BaseLLMAdaper):
def match(self, model_path: str):
return "chatglm" in model_path
def loader(
self,
model_path: str,
from_pretrained_kwargs: dict,
device_map=None,
num_gpus=CFG.NUM_GPUS,
):
def loader(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
if DEVICE != "cuda":
@ -130,6 +127,8 @@ class ChatGLMAdapater(BaseLLMAdaper):
).float()
return model, tokenizer
else:
device_map = None
num_gpus = torch.cuda.device_count()
model = (
AutoModel.from_pretrained(
model_path, trust_remote_code=True, **from_pretrained_kwargs
@ -138,9 +137,6 @@ class ChatGLMAdapater(BaseLLMAdaper):
)
from accelerate import dispatch_model
# model = AutoModel.from_pretrained(model_path, trust_remote_code=True,
# **from_pretrained_kwargs).half()
#
if device_map is None:
device_map = auto_configure_device_map(num_gpus)

View File

@ -1,44 +1,70 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import sys
import warnings
from typing import Optional
from typing import Optional, Dict
import dataclasses
import torch
from pilot.configs.model_config import DEVICE
from pilot.model.adapter import get_llm_model_adapter
from pilot.model.adapter import get_llm_model_adapter, BaseLLMAdaper
from pilot.model.compression import compress_module
from pilot.model.llm.monkey_patch import replace_llama_attn_with_non_inplace_operations
from pilot.singleton import Singleton
from pilot.utils import get_gpu_memory
from pilot.logs import logger
def raise_warning_for_incompatible_cpu_offloading_configuration(
device: str, load_8bit: bool, cpu_offloading: bool
):
if cpu_offloading:
if not load_8bit:
warnings.warn(
"The cpu-offloading feature can only be used while also using 8-bit-quantization.\n"
"Use '--load-8bit' to enable 8-bit-quantization\n"
"Continuing without cpu-offloading enabled\n"
class ModelType:
""" "Type of model"""
HF = "huggingface"
LLAMA_CPP = "llama.cpp"
# TODO, support more model type
@dataclasses.dataclass
class ModelParams:
device: str
model_name: str
model_path: str
model_type: Optional[str] = ModelType.HF
num_gpus: Optional[int] = None
max_gpu_memory: Optional[str] = None
cpu_offloading: Optional[bool] = False
load_8bit: Optional[bool] = True
load_4bit: Optional[bool] = False
# quantization datatypes, `fp4` (four bit float) and `nf4` (normal four bit float)
quant_type: Optional[str] = "nf4"
# Nested quantization is activated through `use_double_quant``
use_double_quant: Optional[bool] = True
# "bfloat16", "float16", "float32"
compute_dtype: Optional[str] = None
debug: Optional[bool] = False
trust_remote_code: Optional[bool] = True
def _check_multi_gpu_or_4bit_quantization(model_params: ModelParams):
model_name = model_params.model_name.lower()
supported_models = ["llama", "baichuan", "vicuna"]
return any(m in model_name for m in supported_models)
def _check_quantization(model_params: ModelParams):
model_name = model_params.model_name.lower()
has_quantization = any([model_params.load_8bit or model_params.load_4bit])
if has_quantization:
if model_params.device != "cuda":
logger.warn(
"8-bit quantization and 4-bit quantization just supported by cuda"
)
return False
if not "linux" in sys.platform:
warnings.warn(
"CPU-offloading is only supported on linux-systems due to the limited compatability with the bitsandbytes-package\n"
"Continuing without cpu-offloading enabled\n"
)
elif "chatglm" in model_name:
if "int4" not in model_name:
logger.warn(
"chatglm or chatglm2 not support quantization now, see: https://github.com/huggingface/transformers/issues/25228"
)
return False
if device != "cuda":
warnings.warn(
"CPU-offloading is only enabled when using CUDA-devices\n"
"Continuing without cpu-offloading enabled\n"
)
return False
return cpu_offloading
return has_quantization
class ModelLoader(metaclass=Singleton):
@ -51,9 +77,10 @@ class ModelLoader(metaclass=Singleton):
kwargs = {}
def __init__(self, model_path) -> None:
def __init__(self, model_path: str, model_name: str = None) -> None:
self.device = DEVICE
self.model_path = model_path
self.model_name = model_name
self.kwargs = {
"torch_dtype": torch.float16,
"device_map": "auto",
@ -64,64 +91,213 @@ class ModelLoader(metaclass=Singleton):
self,
num_gpus,
load_8bit=False,
load_4bit=False,
debug=False,
cpu_offloading=False,
max_gpu_memory: Optional[str] = None,
):
if self.device == "cpu":
kwargs = {"torch_dtype": torch.float32}
model_params = ModelParams(
device=self.device,
model_path=self.model_path,
model_name=self.model_name,
num_gpus=num_gpus,
max_gpu_memory=max_gpu_memory,
cpu_offloading=cpu_offloading,
load_8bit=load_8bit,
load_4bit=load_4bit,
debug=debug,
)
elif self.device == "cuda":
kwargs = {"torch_dtype": torch.float16}
num_gpus = torch.cuda.device_count()
llm_adapter = get_llm_model_adapter(model_params.model_path)
return huggingface_loader(llm_adapter, model_params)
if num_gpus != 1:
kwargs["device_map"] = "auto"
# if max_gpu_memory is None:
# kwargs["device_map"] = "sequential"
available_gpu_memory = get_gpu_memory(num_gpus)
kwargs["max_memory"] = {
i: str(int(available_gpu_memory[i] * 0.85)) + "GiB"
for i in range(num_gpus)
}
def huggingface_loader(llm_adapter: BaseLLMAdaper, model_params: ModelParams):
device = model_params.device
max_memory = None
if device == "cpu":
kwargs = {"torch_dtype": torch.float32}
elif device == "cuda":
kwargs = {"torch_dtype": torch.float16}
num_gpus = torch.cuda.device_count()
available_gpu_memory = get_gpu_memory(num_gpus)
max_memory = {
i: str(int(available_gpu_memory[i] * 0.85)) + "GiB" for i in range(num_gpus)
}
if num_gpus != 1:
kwargs["device_map"] = "auto"
kwargs["max_memory"] = max_memory
elif model_params.max_gpu_memory:
logger.info(
f"There has max_gpu_memory from config: {model_params.max_gpu_memory}"
)
max_memory = {i: model_params.max_gpu_memory for i in range(num_gpus)}
kwargs["max_memory"] = max_memory
logger.debug(f"max_memory: {max_memory}")
else:
kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)}
elif device == "mps":
kwargs = {"torch_dtype": torch.float16}
replace_llama_attn_with_non_inplace_operations()
else:
raise ValueError(f"Invalid device: {device}")
elif self.device == "mps":
kwargs = kwargs = {"torch_dtype": torch.float16}
replace_llama_attn_with_non_inplace_operations()
can_quantization = _check_quantization(model_params)
if can_quantization and (num_gpus > 1 or model_params.load_4bit):
if _check_multi_gpu_or_4bit_quantization(model_params):
return load_huggingface_quantization_model(
llm_adapter, model_params, kwargs, max_memory
)
else:
raise ValueError(f"Invalid device: {self.device}")
logger.warn(
f"Current model {model_params.model_name} not supported quantization"
)
# default loader
model, tokenizer = llm_adapter.loader(model_params.model_path, kwargs)
# TODO when cpu loading, need use quantization config
if model_params.load_8bit and num_gpus == 1 and tokenizer:
# TODO merge current code into `load_huggingface_quantization_model`
compress_module(model, model_params.device)
llm_adapter = get_llm_model_adapter(self.model_path)
model, tokenizer = llm_adapter.loader(self.model_path, kwargs)
if (
(device == "cuda" and num_gpus == 1 and not model_params.cpu_offloading)
or device == "mps"
and tokenizer
):
try:
model.to(device)
except ValueError:
pass
except AttributeError:
pass
if model_params.debug:
print(model)
return model, tokenizer
if load_8bit and tokenizer:
if num_gpus != 1:
warnings.warn(
"8-bit quantization is not supported for multi-gpu inference"
)
else:
compress_module(model, self.device)
if (
(self.device == "cuda" and num_gpus == 1 and not cpu_offloading)
or self.device == "mps"
and tokenizer
):
# 4-bit not support this
try:
model.to(self.device)
except ValueError:
pass
except AttributeError:
pass
def load_huggingface_quantization_model(
llm_adapter: BaseLLMAdaper,
model_params: ModelParams,
kwargs: Dict,
max_memory: Dict[int, str],
):
try:
from accelerate import init_empty_weights
from accelerate.utils import infer_auto_device_map
import transformers
from transformers import (
BitsAndBytesConfig,
AutoConfig,
AutoModel,
AutoModelForCausalLM,
LlamaForCausalLM,
AutoModelForSeq2SeqLM,
LlamaTokenizer,
AutoTokenizer,
)
except ImportError as exc:
raise ValueError(
"Could not import depend python package "
"Please install it with `pip install transformers` "
"`pip install bitsandbytes``pip install accelerate`."
) from exc
if (
"llama-2" in model_params.model_name.lower()
and not transformers.__version__ >= "4.31.0"
):
raise ValueError(
"Llama-2 quantization require transformers.__version__>=4.31.0"
)
params = {"low_cpu_mem_usage": True}
params["low_cpu_mem_usage"] = True
params["device_map"] = "auto"
if debug:
print(model)
torch_dtype = kwargs.get("torch_dtype")
return model, tokenizer
if model_params.load_4bit:
compute_dtype = None
if model_params.compute_dtype and model_params.compute_dtype in [
"bfloat16",
"float16",
"float32",
]:
compute_dtype = eval("torch.{}".format(model_params.compute_dtype))
quantization_config_params = {
"load_in_4bit": True,
"bnb_4bit_compute_dtype": compute_dtype,
"bnb_4bit_quant_type": model_params.quant_type,
"bnb_4bit_use_double_quant": model_params.use_double_quant,
}
logger.warn(
"Using the following 4-bit params: " + str(quantization_config_params)
)
params["quantization_config"] = BitsAndBytesConfig(**quantization_config_params)
elif model_params.load_8bit and max_memory:
params["quantization_config"] = BitsAndBytesConfig(
load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True
)
elif model_params.load_in_8bit:
params["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
params["torch_dtype"] = torch_dtype if torch_dtype else torch.float16
params["max_memory"] = max_memory
if "chatglm" in model_params.model_name.lower():
LoaderClass = AutoModel
else:
config = AutoConfig.from_pretrained(
model_params.model_path, trust_remote_code=model_params.trust_remote_code
)
if config.to_dict().get("is_encoder_decoder", False):
LoaderClass = AutoModelForSeq2SeqLM
else:
LoaderClass = AutoModelForCausalLM
if model_params.load_8bit and max_memory is not None:
config = AutoConfig.from_pretrained(
model_params.model_path, trust_remote_code=model_params.trust_remote_code
)
with init_empty_weights():
model = LoaderClass.from_config(
config, trust_remote_code=model_params.trust_remote_code
)
model.tie_weights()
params["device_map"] = infer_auto_device_map(
model,
dtype=torch.int8,
max_memory=params["max_memory"].copy(),
no_split_module_classes=model._no_split_modules,
)
try:
if model_params.trust_remote_code:
params["trust_remote_code"] = True
logger.info(f"params: {params}")
model = LoaderClass.from_pretrained(model_params.model_path, **params)
except Exception as e:
logger.error(
f"Load quantization model failed, error: {str(e)}, params: {params}"
)
raise e
# Loading the tokenizer
if type(model) is LlamaForCausalLM:
tokenizer = LlamaTokenizer.from_pretrained(
model_params.model_path, clean_up_tokenization_spaces=True
)
# Leaving this here until the LLaMA tokenizer gets figured out.
# For some people this fixes things, for others it causes an error.
try:
tokenizer.eos_token_id = 2
tokenizer.bos_token_id = 1
tokenizer.pad_token_id = 0
except Exception as e:
logger.warn(f"{str(e)}")
else:
tokenizer = AutoTokenizer.from_pretrained(
model_params.model_path,
trust_remote_code=model_params.trust_remote_code,
use_fast=llm_adapter.use_fast_tokenizer(),
)
return model, tokenizer

View File

@ -37,9 +37,13 @@ class ModelWorker:
self.model_name = model_name or model_path.split("/")[-1]
self.device = device
print(f"Loading {model_name} LLM ModelServer in {device}! Please Wait......")
self.ml = ModelLoader(model_path=model_path)
self.ml = ModelLoader(model_path=model_path, model_name=self.model_name)
self.model, self.tokenizer = self.ml.loader(
num_gpus, load_8bit=ISLOAD_8BIT, debug=ISDEBUG
num_gpus,
load_8bit=CFG.IS_LOAD_8BIT,
load_4bit=CFG.IS_LOAD_4BIT,
debug=ISDEBUG,
max_gpu_memory=CFG.MAX_GPU_MEMORY,
)
if not isinstance(self.model, str):

View File

@ -1,10 +1,8 @@
torch==2.0.0
accelerate==0.16.0
aiohttp==3.8.4
aiosignal==1.3.1
async-timeout==4.0.2
attrs==22.2.0
bitsandbytes==0.39.0
cchardet==2.1.7
chardet==5.1.0
contourpy==1.0.7
@ -27,7 +25,7 @@ python-dateutil==2.8.2
pyyaml==6.0
tokenizers==0.13.2
tqdm==4.64.1
transformers==4.30.0
transformers>=4.31.0
transformers_stream_generator
timm==0.6.13
spacy==3.5.3
@ -48,6 +46,9 @@ gradio-client==0.0.8
wandb
llama-index==0.5.27
bitsandbytes
accelerate>=0.20.3
unstructured==0.6.3
grpcio==1.47.5
gpt4all==0.3.0