mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-08 03:44:14 +00:00
doc:knowledge docs update
This commit is contained in:
parent
f85def5a52
commit
16d6ce8c89
@ -6,13 +6,14 @@ inheriting the SourceEmbedding
|
|||||||
|
|
||||||
```
|
```
|
||||||
class MarkdownEmbedding(SourceEmbedding):
|
class MarkdownEmbedding(SourceEmbedding):
|
||||||
"""pdf embedding for read pdf document."""
|
"""pdf embedding for read markdown document."""
|
||||||
|
|
||||||
def __init__(self, file_path, vector_store_config):
|
def __init__(self, file_path, vector_store_config, text_splitter):
|
||||||
"""Initialize with pdf path."""
|
"""Initialize with markdown path."""
|
||||||
super().__init__(file_path, vector_store_config)
|
super().__init__(file_path, vector_store_config, text_splitter)
|
||||||
self.file_path = file_path
|
self.file_path = file_path
|
||||||
self.vector_store_config = vector_store_config
|
self.vector_store_config = vector_store_config
|
||||||
|
self.text_splitter = text_splitter or Nore
|
||||||
```
|
```
|
||||||
implement read() and data_process()
|
implement read() and data_process()
|
||||||
read() method allows you to read data and split data into chunk
|
read() method allows you to read data and split data into chunk
|
||||||
@ -22,12 +23,19 @@ read() method allows you to read data and split data into chunk
|
|||||||
def read(self):
|
def read(self):
|
||||||
"""Load from markdown path."""
|
"""Load from markdown path."""
|
||||||
loader = EncodeTextLoader(self.file_path)
|
loader = EncodeTextLoader(self.file_path)
|
||||||
textsplitter = SpacyTextSplitter(
|
if self.text_splitter is None:
|
||||||
|
try:
|
||||||
|
self.text_splitter = SpacyTextSplitter(
|
||||||
pipeline="zh_core_web_sm",
|
pipeline="zh_core_web_sm",
|
||||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
chunk_size=100,
|
||||||
chunk_overlap=100,
|
chunk_overlap=100,
|
||||||
)
|
)
|
||||||
return loader.load_and_split(textsplitter)
|
except Exception:
|
||||||
|
self.text_splitter = RecursiveCharacterTextSplitter(
|
||||||
|
chunk_size=100, chunk_overlap=50
|
||||||
|
)
|
||||||
|
|
||||||
|
return loader.load_and_split(self.text_splitter)
|
||||||
```
|
```
|
||||||
|
|
||||||
data_process() method allows you to pre processing your ways
|
data_process() method allows you to pre processing your ways
|
||||||
|
@ -7,11 +7,12 @@ inheriting the SourceEmbedding
|
|||||||
class PDFEmbedding(SourceEmbedding):
|
class PDFEmbedding(SourceEmbedding):
|
||||||
"""pdf embedding for read pdf document."""
|
"""pdf embedding for read pdf document."""
|
||||||
|
|
||||||
def __init__(self, file_path, vector_store_config):
|
def __init__(self, file_path, vector_store_config, text_splitter):
|
||||||
"""Initialize with pdf path."""
|
"""Initialize with pdf path."""
|
||||||
super().__init__(file_path, vector_store_config)
|
super().__init__(file_path, vector_store_config, text_splitter)
|
||||||
self.file_path = file_path
|
self.file_path = file_path
|
||||||
self.vector_store_config = vector_store_config
|
self.vector_store_config = vector_store_config
|
||||||
|
self.text_splitter = text_splitter or Nore
|
||||||
```
|
```
|
||||||
|
|
||||||
implement read() and data_process()
|
implement read() and data_process()
|
||||||
@ -21,15 +22,19 @@ read() method allows you to read data and split data into chunk
|
|||||||
def read(self):
|
def read(self):
|
||||||
"""Load from pdf path."""
|
"""Load from pdf path."""
|
||||||
loader = PyPDFLoader(self.file_path)
|
loader = PyPDFLoader(self.file_path)
|
||||||
# textsplitter = CHNDocumentSplitter(
|
if self.text_splitter is None:
|
||||||
# pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
|
try:
|
||||||
# )
|
self.text_splitter = SpacyTextSplitter(
|
||||||
textsplitter = SpacyTextSplitter(
|
|
||||||
pipeline="zh_core_web_sm",
|
pipeline="zh_core_web_sm",
|
||||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
chunk_size=100,
|
||||||
chunk_overlap=100,
|
chunk_overlap=100,
|
||||||
)
|
)
|
||||||
return loader.load_and_split(textsplitter)
|
except Exception:
|
||||||
|
self.text_splitter = RecursiveCharacterTextSplitter(
|
||||||
|
chunk_size=100, chunk_overlap=50
|
||||||
|
)
|
||||||
|
|
||||||
|
return loader.load_and_split(self.text_splitter)
|
||||||
```
|
```
|
||||||
data_process() method allows you to pre processing your ways
|
data_process() method allows you to pre processing your ways
|
||||||
```
|
```
|
||||||
|
@ -7,11 +7,17 @@ inheriting the SourceEmbedding
|
|||||||
class PPTEmbedding(SourceEmbedding):
|
class PPTEmbedding(SourceEmbedding):
|
||||||
"""ppt embedding for read ppt document."""
|
"""ppt embedding for read ppt document."""
|
||||||
|
|
||||||
def __init__(self, file_path, vector_store_config):
|
def __init__(
|
||||||
"""Initialize with pdf path."""
|
self,
|
||||||
super().__init__(file_path, vector_store_config)
|
file_path,
|
||||||
|
vector_store_config,
|
||||||
|
text_splitter: Optional[TextSplitter] = None,
|
||||||
|
):
|
||||||
|
"""Initialize ppt word path."""
|
||||||
|
super().__init__(file_path, vector_store_config, text_splitter=None)
|
||||||
self.file_path = file_path
|
self.file_path = file_path
|
||||||
self.vector_store_config = vector_store_config
|
self.vector_store_config = vector_store_config
|
||||||
|
self.text_splitter = text_splitter or None
|
||||||
```
|
```
|
||||||
|
|
||||||
implement read() and data_process()
|
implement read() and data_process()
|
||||||
@ -21,12 +27,19 @@ read() method allows you to read data and split data into chunk
|
|||||||
def read(self):
|
def read(self):
|
||||||
"""Load from ppt path."""
|
"""Load from ppt path."""
|
||||||
loader = UnstructuredPowerPointLoader(self.file_path)
|
loader = UnstructuredPowerPointLoader(self.file_path)
|
||||||
textsplitter = SpacyTextSplitter(
|
if self.text_splitter is None:
|
||||||
|
try:
|
||||||
|
self.text_splitter = SpacyTextSplitter(
|
||||||
pipeline="zh_core_web_sm",
|
pipeline="zh_core_web_sm",
|
||||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
chunk_size=100,
|
||||||
chunk_overlap=200,
|
chunk_overlap=100,
|
||||||
)
|
)
|
||||||
return loader.load_and_split(textsplitter)
|
except Exception:
|
||||||
|
self.text_splitter = RecursiveCharacterTextSplitter(
|
||||||
|
chunk_size=100, chunk_overlap=50
|
||||||
|
)
|
||||||
|
|
||||||
|
return loader.load_and_split(self.text_splitter)
|
||||||
```
|
```
|
||||||
data_process() method allows you to pre processing your ways
|
data_process() method allows you to pre processing your ways
|
||||||
```
|
```
|
||||||
|
@ -7,11 +7,17 @@ inheriting the SourceEmbedding
|
|||||||
class URLEmbedding(SourceEmbedding):
|
class URLEmbedding(SourceEmbedding):
|
||||||
"""url embedding for read url document."""
|
"""url embedding for read url document."""
|
||||||
|
|
||||||
def __init__(self, file_path, vector_store_config):
|
def __init__(
|
||||||
"""Initialize with url path."""
|
self,
|
||||||
super().__init__(file_path, vector_store_config)
|
file_path,
|
||||||
|
vector_store_config,
|
||||||
|
text_splitter: Optional[TextSplitter] = None,
|
||||||
|
):
|
||||||
|
"""Initialize url word path."""
|
||||||
|
super().__init__(file_path, vector_store_config, text_splitter=None)
|
||||||
self.file_path = file_path
|
self.file_path = file_path
|
||||||
self.vector_store_config = vector_store_config
|
self.vector_store_config = vector_store_config
|
||||||
|
self.text_splitter = text_splitter or None
|
||||||
```
|
```
|
||||||
|
|
||||||
implement read() and data_process()
|
implement read() and data_process()
|
||||||
@ -21,15 +27,19 @@ read() method allows you to read data and split data into chunk
|
|||||||
def read(self):
|
def read(self):
|
||||||
"""Load from url path."""
|
"""Load from url path."""
|
||||||
loader = WebBaseLoader(web_path=self.file_path)
|
loader = WebBaseLoader(web_path=self.file_path)
|
||||||
if CFG.LANGUAGE == "en":
|
if self.text_splitter is None:
|
||||||
text_splitter = CharacterTextSplitter(
|
try:
|
||||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
self.text_splitter = SpacyTextSplitter(
|
||||||
chunk_overlap=20,
|
pipeline="zh_core_web_sm",
|
||||||
length_function=len,
|
chunk_size=100,
|
||||||
|
chunk_overlap=100,
|
||||||
)
|
)
|
||||||
else:
|
except Exception:
|
||||||
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
|
self.text_splitter = RecursiveCharacterTextSplitter(
|
||||||
return loader.load_and_split(text_splitter)
|
chunk_size=100, chunk_overlap=50
|
||||||
|
)
|
||||||
|
|
||||||
|
return loader.load_and_split(self.text_splitter)
|
||||||
```
|
```
|
||||||
data_process() method allows you to pre processing your ways
|
data_process() method allows you to pre processing your ways
|
||||||
```
|
```
|
||||||
|
@ -7,11 +7,12 @@ inheriting the SourceEmbedding
|
|||||||
class WordEmbedding(SourceEmbedding):
|
class WordEmbedding(SourceEmbedding):
|
||||||
"""word embedding for read word document."""
|
"""word embedding for read word document."""
|
||||||
|
|
||||||
def __init__(self, file_path, vector_store_config):
|
def __init__(self, file_path, vector_store_config, text_splitter):
|
||||||
"""Initialize with word path."""
|
"""Initialize with pdf path."""
|
||||||
super().__init__(file_path, vector_store_config)
|
super().__init__(file_path, vector_store_config, text_splitter)
|
||||||
self.file_path = file_path
|
self.file_path = file_path
|
||||||
self.vector_store_config = vector_store_config
|
self.vector_store_config = vector_store_config
|
||||||
|
self.text_splitter = text_splitter or Nore
|
||||||
```
|
```
|
||||||
|
|
||||||
implement read() and data_process()
|
implement read() and data_process()
|
||||||
@ -21,10 +22,19 @@ read() method allows you to read data and split data into chunk
|
|||||||
def read(self):
|
def read(self):
|
||||||
"""Load from word path."""
|
"""Load from word path."""
|
||||||
loader = UnstructuredWordDocumentLoader(self.file_path)
|
loader = UnstructuredWordDocumentLoader(self.file_path)
|
||||||
textsplitter = CHNDocumentSplitter(
|
if self.text_splitter is None:
|
||||||
pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
|
try:
|
||||||
|
self.text_splitter = SpacyTextSplitter(
|
||||||
|
pipeline="zh_core_web_sm",
|
||||||
|
chunk_size=100,
|
||||||
|
chunk_overlap=100,
|
||||||
)
|
)
|
||||||
return loader.load_and_split(textsplitter)
|
except Exception:
|
||||||
|
self.text_splitter = RecursiveCharacterTextSplitter(
|
||||||
|
chunk_size=100, chunk_overlap=50
|
||||||
|
)
|
||||||
|
|
||||||
|
return loader.load_and_split(self.text_splitter)
|
||||||
```
|
```
|
||||||
data_process() method allows you to pre processing your ways
|
data_process() method allows you to pre processing your ways
|
||||||
```
|
```
|
||||||
|
@ -8,6 +8,13 @@ from pilot.vector_store.connector import VectorStoreConnector
|
|||||||
|
|
||||||
|
|
||||||
class EmbeddingEngine:
|
class EmbeddingEngine:
|
||||||
|
"""EmbeddingEngine provide a chain process include(read->text_split->data_process->index_store) for knowledge document embedding into vector store.
|
||||||
|
1.knowledge_embedding:knowledge document source into vector store.(Chroma, Milvus, Weaviate)
|
||||||
|
2.similar_search: similarity search from vector_store
|
||||||
|
how to use reference:https://db-gpt.readthedocs.io/en/latest/modules/knowledge.html
|
||||||
|
how to integrate:https://db-gpt.readthedocs.io/en/latest/modules/knowledge/pdf/pdf_embedding.html
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
model_name,
|
model_name,
|
||||||
@ -24,14 +31,17 @@ class EmbeddingEngine:
|
|||||||
self.vector_store_config["embeddings"] = self.embeddings
|
self.vector_store_config["embeddings"] = self.embeddings
|
||||||
|
|
||||||
def knowledge_embedding(self):
|
def knowledge_embedding(self):
|
||||||
|
"""source embedding is chain process.read->text_split->data_process->index_store"""
|
||||||
self.knowledge_embedding_client = self.init_knowledge_embedding()
|
self.knowledge_embedding_client = self.init_knowledge_embedding()
|
||||||
self.knowledge_embedding_client.source_embedding()
|
self.knowledge_embedding_client.source_embedding()
|
||||||
|
|
||||||
def knowledge_embedding_batch(self, docs):
|
def knowledge_embedding_batch(self, docs):
|
||||||
|
"""Deprecation"""
|
||||||
# docs = self.knowledge_embedding_client.read_batch()
|
# docs = self.knowledge_embedding_client.read_batch()
|
||||||
return self.knowledge_embedding_client.index_to_store(docs)
|
return self.knowledge_embedding_client.index_to_store(docs)
|
||||||
|
|
||||||
def read(self):
|
def read(self):
|
||||||
|
"""Deprecation"""
|
||||||
self.knowledge_embedding_client = self.init_knowledge_embedding()
|
self.knowledge_embedding_client = self.init_knowledge_embedding()
|
||||||
return self.knowledge_embedding_client.read_batch()
|
return self.knowledge_embedding_client.read_batch()
|
||||||
|
|
||||||
|
@ -73,6 +73,7 @@ class VicunaLLMAdapater(BaseLLMAdaper):
|
|||||||
)
|
)
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
|
||||||
|
|
||||||
def auto_configure_device_map(num_gpus):
|
def auto_configure_device_map(num_gpus):
|
||||||
"""handling multi gpu calls"""
|
"""handling multi gpu calls"""
|
||||||
# transformer.word_embeddings occupying 1 floors
|
# transformer.word_embeddings occupying 1 floors
|
||||||
@ -88,11 +89,11 @@ def auto_configure_device_map(num_gpus):
|
|||||||
# If transformer. word_ If embeddings. device and model. device are different, it will cause a RuntimeError
|
# If transformer. word_ If embeddings. device and model. device are different, it will cause a RuntimeError
|
||||||
# Therefore, here we will transform. word_ Embeddings, transformer. final_ Layernorm, lm_ Put all the heads on the first card
|
# Therefore, here we will transform. word_ Embeddings, transformer. final_ Layernorm, lm_ Put all the heads on the first card
|
||||||
device_map = {
|
device_map = {
|
||||||
'transformer.embedding.word_embeddings': 0,
|
"transformer.embedding.word_embeddings": 0,
|
||||||
'transformer.encoder.final_layernorm': 0,
|
"transformer.encoder.final_layernorm": 0,
|
||||||
'transformer.output_layer': 0,
|
"transformer.output_layer": 0,
|
||||||
'transformer.rotary_pos_emb': 0,
|
"transformer.rotary_pos_emb": 0,
|
||||||
'lm_head': 0
|
"lm_head": 0,
|
||||||
}
|
}
|
||||||
|
|
||||||
used = 2
|
used = 2
|
||||||
@ -102,7 +103,7 @@ def auto_configure_device_map(num_gpus):
|
|||||||
gpu_target += 1
|
gpu_target += 1
|
||||||
used = 0
|
used = 0
|
||||||
assert gpu_target < num_gpus
|
assert gpu_target < num_gpus
|
||||||
device_map[f'transformer.encoder.layers.{i}'] = gpu_target
|
device_map[f"transformer.encoder.layers.{i}"] = gpu_target
|
||||||
used += 1
|
used += 1
|
||||||
|
|
||||||
return device_map
|
return device_map
|
||||||
@ -114,7 +115,13 @@ class ChatGLMAdapater(BaseLLMAdaper):
|
|||||||
def match(self, model_path: str):
|
def match(self, model_path: str):
|
||||||
return "chatglm" in model_path
|
return "chatglm" in model_path
|
||||||
|
|
||||||
def loader(self, model_path: str, from_pretrained_kwargs: dict, device_map=None, num_gpus=CFG.NUM_GPUS):
|
def loader(
|
||||||
|
self,
|
||||||
|
model_path: str,
|
||||||
|
from_pretrained_kwargs: dict,
|
||||||
|
device_map=None,
|
||||||
|
num_gpus=CFG.NUM_GPUS,
|
||||||
|
):
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
|
||||||
if DEVICE != "cuda":
|
if DEVICE != "cuda":
|
||||||
@ -125,10 +132,8 @@ class ChatGLMAdapater(BaseLLMAdaper):
|
|||||||
else:
|
else:
|
||||||
model = (
|
model = (
|
||||||
AutoModel.from_pretrained(
|
AutoModel.from_pretrained(
|
||||||
model_path, trust_remote_code=True,
|
model_path, trust_remote_code=True, **from_pretrained_kwargs
|
||||||
**from_pretrained_kwargs
|
).half()
|
||||||
)
|
|
||||||
.half()
|
|
||||||
# .cuda()
|
# .cuda()
|
||||||
)
|
)
|
||||||
from accelerate import dispatch_model
|
from accelerate import dispatch_model
|
||||||
|
@ -6,7 +6,13 @@ connector = {"Chroma": ChromaStore, "Milvus": MilvusStore}
|
|||||||
|
|
||||||
|
|
||||||
class VectorStoreConnector:
|
class VectorStoreConnector:
|
||||||
"""vector store connector, can connect different vector db provided load document api_v1 and similar search api_v1."""
|
"""VectorStoreConnector, can connect different vector db provided load document api_v1 and similar search api_v1.
|
||||||
|
1.load_document:knowledge document source into vector store.(Chroma, Milvus, Weaviate)
|
||||||
|
2.similar_search: similarity search from vector_store
|
||||||
|
how to use reference:https://db-gpt.readthedocs.io/en/latest/modules/vector.html
|
||||||
|
how to integrate:https://db-gpt.readthedocs.io/en/latest/modules/vector/milvus/milvus.html
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self, vector_store_type, ctx: {}) -> None:
|
def __init__(self, vector_store_type, ctx: {}) -> None:
|
||||||
"""initialize vector store connector."""
|
"""initialize vector store connector."""
|
||||||
|
Loading…
Reference in New Issue
Block a user