feat(awel): New AWEL RAG example

This commit is contained in:
FangYin Cheng 2023-11-21 14:33:56 +08:00
parent e67d62a785
commit 1801138b62
16 changed files with 548 additions and 179 deletions

View File

@ -0,0 +1,70 @@
"""AWEL: Simple rag example
Example:
.. code-block:: shell
curl -X POST http://127.0.0.1:5000/api/v1/awel/trigger/examples/simple_rag \
-H "Content-Type: application/json" -d '{
"conv_uid": "36f0e992-8825-11ee-8638-0242ac150003",
"model_name": "proxyllm",
"chat_mode": "chat_knowledge",
"user_input": "What is DB-GPT?",
"select_param": "default"
}'
"""
from pilot.awel import HttpTrigger, DAG, MapOperator
from pilot.scene.operator._experimental import (
ChatContext,
PromptManagerOperator,
ChatHistoryStorageOperator,
ChatHistoryOperator,
EmbeddingEngingOperator,
BaseChatOperator,
)
from pilot.scene.base import ChatScene
from pilot.openapi.api_view_model import ConversationVo
from pilot.model.base import ModelOutput
from pilot.model.operator.model_operator import ModelOperator
class RequestParseOperator(MapOperator[ConversationVo, ChatContext]):
def __init__(self, **kwargs):
super().__init__(**kwargs)
async def map(self, input_value: ConversationVo) -> ChatContext:
return ChatContext(
current_user_input=input_value.user_input,
model_name=input_value.model_name,
chat_session_id=input_value.conv_uid,
select_param=input_value.select_param,
chat_scene=ChatScene.ChatKnowledge,
)
with DAG("simple_rag_example") as dag:
trigger_task = HttpTrigger(
"/examples/simple_rag", methods="POST", request_body=ConversationVo
)
req_parse_task = RequestParseOperator()
prompt_task = PromptManagerOperator()
history_storage_task = ChatHistoryStorageOperator()
history_task = ChatHistoryOperator()
embedding_task = EmbeddingEngingOperator()
chat_task = BaseChatOperator()
model_task = ModelOperator()
output_parser_task = MapOperator(lambda out: out.to_dict()["text"])
(
trigger_task
>> req_parse_task
>> prompt_task
>> history_storage_task
>> history_task
>> embedding_task
>> chat_task
>> model_task
>> output_parser_task
)

View File

@ -7,6 +7,7 @@ import asyncio
import logging
from collections import deque
from functools import cache
from concurrent.futures import Executor
from pilot.component import SystemApp
from ..resource.base import ResourceGroup
@ -102,6 +103,7 @@ class DAGVar:
_thread_local = threading.local()
_async_local = contextvars.ContextVar("current_dag_stack", default=deque())
_system_app: SystemApp = None
_executor: Executor = None
@classmethod
def enter_dag(cls, dag) -> None:
@ -157,6 +159,14 @@ class DAGVar:
else:
cls._system_app = system_app
@classmethod
def get_executor(cls) -> Executor:
return cls._executor
@classmethod
def set_executor(cls, executor: Executor) -> None:
cls._executor = executor
class DAGNode(DependencyMixin, ABC):
resource_group: Optional[ResourceGroup] = None
@ -165,9 +175,10 @@ class DAGNode(DependencyMixin, ABC):
def __init__(
self,
dag: Optional["DAG"] = None,
node_id: str = None,
node_name: str = None,
system_app: SystemApp = None,
node_id: Optional[str] = None,
node_name: Optional[str] = None,
system_app: Optional[SystemApp] = None,
executor: Optional[Executor] = None,
) -> None:
super().__init__()
self._upstream: List["DAGNode"] = []
@ -176,6 +187,7 @@ class DAGNode(DependencyMixin, ABC):
self._system_app: Optional[SystemApp] = (
system_app or DAGVar.get_current_system_app()
)
self._executor: Optional[Executor] = executor or DAGVar.get_executor()
if not node_id and self._dag:
node_id = self._dag._new_node_id()
self._node_id: str = node_id

View File

@ -14,7 +14,13 @@ from typing import (
)
import functools
from inspect import signature
from pilot.component import SystemApp
from pilot.component import SystemApp, ComponentType
from pilot.utils.executor_utils import (
ExecutorFactory,
DefaultExecutorFactory,
blocking_func_to_async,
BlockingFunction,
)
from ..dag.base import DAGNode, DAGContext, DAGVar, DAG
from ..task.base import (
@ -71,6 +77,16 @@ class BaseOperatorMeta(ABCMeta):
system_app: Optional[SystemApp] = (
kwargs.get("system_app") or DAGVar.get_current_system_app()
)
executor = kwargs.get("executor") or DAGVar.get_executor()
if not executor:
if system_app:
executor = system_app.get_component(
ComponentType.EXECUTOR_DEFAULT, ExecutorFactory
).create()
else:
executor = DefaultExecutorFactory().create()
DAGVar.set_executor(executor)
if not task_id and dag:
task_id = dag._new_node_id()
runner: Optional[WorkflowRunner] = kwargs.get("runner") or default_runner
@ -86,6 +102,8 @@ class BaseOperatorMeta(ABCMeta):
kwargs["runner"] = runner
if not kwargs.get("system_app"):
kwargs["system_app"] = system_app
if not kwargs.get("executor"):
kwargs["executor"] = executor
real_obj = func(self, *args, **kwargs)
return real_obj
@ -177,6 +195,11 @@ class BaseOperator(DAGNode, ABC, Generic[OUT], metaclass=BaseOperatorMeta):
out_ctx = await self._runner.execute_workflow(self, call_data)
return out_ctx.current_task_context.task_output.output_stream
async def blocking_func_to_async(
self, func: BlockingFunction, *args, **kwargs
) -> Any:
return await blocking_func_to_async(self._executor, func, *args, **kwargs)
def initialize_runner(runner: WorkflowRunner):
global default_runner

View File

@ -67,7 +67,7 @@ class DefaultWorkflowRunner(WorkflowRunner):
node_outputs[node.node_id] = task_ctx
return
try:
logger.info(
logger.debug(
f"Begin run operator, node id: {node.node_id}, node name: {node.node_name}, cls: {node}"
)
await node._run(dag_ctx)
@ -76,7 +76,7 @@ class DefaultWorkflowRunner(WorkflowRunner):
if isinstance(node, BranchOperator):
skip_nodes = task_ctx.metadata.get("skip_node_names", [])
logger.info(
logger.debug(
f"Current is branch operator, skip node names: {skip_nodes}"
)
_skip_current_downstream_by_node_name(node, skip_nodes, skip_node_ids)

View File

@ -47,7 +47,7 @@ class DbHistoryMemory(BaseChatHistoryMemory):
logger.error("init create conversation log error" + str(e))
def append(self, once_message: OnceConversation) -> None:
logger.info(f"db history append: {once_message}")
logger.debug(f"db history append: {once_message}")
chat_history: ChatHistoryEntity = self.chat_history_dao.get_by_uid(
self.chat_seesion_id
)

View File

@ -143,9 +143,7 @@ def _build_request(model: ProxyModel, params):
proxyllm_backend = proxyllm_backend or "gpt-3.5-turbo"
payloads["model"] = proxyllm_backend
logger.info(
f"Send request to real model {proxyllm_backend}, openai_params: {openai_params}"
)
logger.info(f"Send request to real model {proxyllm_backend}")
return history, payloads

View File

@ -68,7 +68,7 @@ class BaseChat(ABC):
CFG.prompt_template_registry.get_prompt_template(
self.chat_mode.value(),
language=CFG.LANGUAGE,
model_name=CFG.LLM_MODEL,
model_name=self.llm_model,
proxyllm_backend=CFG.PROXYLLM_BACKEND,
)
)
@ -141,13 +141,7 @@ class BaseChat(ABC):
return speak_to_user
async def __call_base(self):
import inspect
input_values = (
await self.generate_input_values()
if inspect.isawaitable(self.generate_input_values())
else self.generate_input_values()
)
input_values = await self.generate_input_values()
### Chat sequence advance
self.current_message.chat_order = len(self.history_message) + 1
self.current_message.add_user_message(self.current_user_input)
@ -379,16 +373,18 @@ class BaseChat(ABC):
if self.prompt_template.template_define:
text += self.prompt_template.template_define + self.prompt_template.sep
### Load prompt
text += self.__load_system_message()
text += _load_system_message(self.current_message, self.prompt_template)
### Load examples
text += self.__load_example_messages()
text += _load_example_messages(self.prompt_template)
### Load History
text += self.__load_history_messages()
text += _load_history_messages(
self.prompt_template, self.history_message, self.chat_retention_rounds
)
### Load User Input
text += self.__load_user_message()
text += _load_user_message(self.current_message, self.prompt_template)
return text
def generate_llm_messages(self) -> List[ModelMessage]:
@ -406,137 +402,26 @@ class BaseChat(ABC):
)
)
### Load prompt
messages += self.__load_system_message(str_message=False)
messages += _load_system_message(
self.current_message, self.prompt_template, str_message=False
)
### Load examples
messages += self.__load_example_messages(str_message=False)
messages += _load_example_messages(self.prompt_template, str_message=False)
### Load History
messages += self.__load_history_messages(str_message=False)
messages += _load_history_messages(
self.prompt_template,
self.history_message,
self.chat_retention_rounds,
str_message=False,
)
### Load User Input
messages += self.__load_user_message(str_message=False)
messages += _load_user_message(
self.current_message, self.prompt_template, str_message=False
)
return messages
def __load_system_message(self, str_message: bool = True):
system_convs = self.current_message.get_system_conv()
system_text = ""
system_messages = []
for system_conv in system_convs:
system_text += (
system_conv.type + ":" + system_conv.content + self.prompt_template.sep
)
system_messages.append(
ModelMessage(role=system_conv.type, content=system_conv.content)
)
return system_text if str_message else system_messages
def __load_user_message(self, str_message: bool = True):
user_conv = self.current_message.get_user_conv()
user_messages = []
if user_conv:
user_text = (
user_conv.type + ":" + user_conv.content + self.prompt_template.sep
)
user_messages.append(
ModelMessage(role=user_conv.type, content=user_conv.content)
)
return user_text if str_message else user_messages
else:
raise ValueError("Hi! What do you want to talk about")
def __load_example_messages(self, str_message: bool = True):
example_text = ""
example_messages = []
if self.prompt_template.example_selector:
for round_conv in self.prompt_template.example_selector.examples():
for round_message in round_conv["messages"]:
if not round_message["type"] in [
ModelMessageRoleType.VIEW,
ModelMessageRoleType.SYSTEM,
]:
message_type = round_message["type"]
message_content = round_message["data"]["content"]
example_text += (
message_type
+ ":"
+ message_content
+ self.prompt_template.sep
)
example_messages.append(
ModelMessage(role=message_type, content=message_content)
)
return example_text if str_message else example_messages
def __load_history_messages(self, str_message: bool = True):
history_text = ""
history_messages = []
if self.prompt_template.need_historical_messages:
if self.history_message:
logger.info(
f"There are already {len(self.history_message)} rounds of conversations! Will use {self.chat_retention_rounds} rounds of content as history!"
)
if len(self.history_message) > self.chat_retention_rounds:
for first_message in self.history_message[0]["messages"]:
if not first_message["type"] in [
ModelMessageRoleType.VIEW,
ModelMessageRoleType.SYSTEM,
]:
message_type = first_message["type"]
message_content = first_message["data"]["content"]
history_text += (
message_type
+ ":"
+ message_content
+ self.prompt_template.sep
)
history_messages.append(
ModelMessage(role=message_type, content=message_content)
)
if self.chat_retention_rounds > 1:
index = self.chat_retention_rounds - 1
for round_conv in self.history_message[-index:]:
for round_message in round_conv["messages"]:
if not round_message["type"] in [
ModelMessageRoleType.VIEW,
ModelMessageRoleType.SYSTEM,
]:
message_type = round_message["type"]
message_content = round_message["data"]["content"]
history_text += (
message_type
+ ":"
+ message_content
+ self.prompt_template.sep
)
history_messages.append(
ModelMessage(
role=message_type, content=message_content
)
)
else:
### user all history
for conversation in self.history_message:
for message in conversation["messages"]:
### histroy message not have promot and view info
if not message["type"] in [
ModelMessageRoleType.VIEW,
ModelMessageRoleType.SYSTEM,
]:
message_type = message["type"]
message_content = message["data"]["content"]
history_text += (
message_type
+ ":"
+ message_content
+ self.prompt_template.sep
)
history_messages.append(
ModelMessage(role=message_type, content=message_content)
)
return history_text if str_message else history_messages
def current_ai_response(self) -> str:
for message in self.current_message.messages:
if message.type == "view":
@ -656,3 +541,127 @@ def _build_model_operator(
cache_check_branch_node >> cached_node >> join_node
return join_node
def _load_system_message(
current_message: OnceConversation,
prompt_template: PromptTemplate,
str_message: bool = True,
):
system_convs = current_message.get_system_conv()
system_text = ""
system_messages = []
for system_conv in system_convs:
system_text += (
system_conv.type + ":" + system_conv.content + prompt_template.sep
)
system_messages.append(
ModelMessage(role=system_conv.type, content=system_conv.content)
)
return system_text if str_message else system_messages
def _load_user_message(
current_message: OnceConversation,
prompt_template: PromptTemplate,
str_message: bool = True,
):
user_conv = current_message.get_user_conv()
user_messages = []
if user_conv:
user_text = user_conv.type + ":" + user_conv.content + prompt_template.sep
user_messages.append(
ModelMessage(role=user_conv.type, content=user_conv.content)
)
return user_text if str_message else user_messages
else:
raise ValueError("Hi! What do you want to talk about")
def _load_example_messages(prompt_template: PromptTemplate, str_message: bool = True):
example_text = ""
example_messages = []
if prompt_template.example_selector:
for round_conv in prompt_template.example_selector.examples():
for round_message in round_conv["messages"]:
if not round_message["type"] in [
ModelMessageRoleType.VIEW,
ModelMessageRoleType.SYSTEM,
]:
message_type = round_message["type"]
message_content = round_message["data"]["content"]
example_text += (
message_type + ":" + message_content + prompt_template.sep
)
example_messages.append(
ModelMessage(role=message_type, content=message_content)
)
return example_text if str_message else example_messages
def _load_history_messages(
prompt_template: PromptTemplate,
history_message: List[OnceConversation],
chat_retention_rounds: int,
str_message: bool = True,
):
history_text = ""
history_messages = []
if prompt_template.need_historical_messages:
if history_message:
logger.info(
f"There are already {len(history_message)} rounds of conversations! Will use {chat_retention_rounds} rounds of content as history!"
)
if len(history_message) > chat_retention_rounds:
for first_message in history_message[0]["messages"]:
if not first_message["type"] in [
ModelMessageRoleType.VIEW,
ModelMessageRoleType.SYSTEM,
]:
message_type = first_message["type"]
message_content = first_message["data"]["content"]
history_text += (
message_type + ":" + message_content + prompt_template.sep
)
history_messages.append(
ModelMessage(role=message_type, content=message_content)
)
if chat_retention_rounds > 1:
index = chat_retention_rounds - 1
for round_conv in history_message[-index:]:
for round_message in round_conv["messages"]:
if not round_message["type"] in [
ModelMessageRoleType.VIEW,
ModelMessageRoleType.SYSTEM,
]:
message_type = round_message["type"]
message_content = round_message["data"]["content"]
history_text += (
message_type
+ ":"
+ message_content
+ prompt_template.sep
)
history_messages.append(
ModelMessage(role=message_type, content=message_content)
)
else:
### user all history
for conversation in history_message:
for message in conversation["messages"]:
### histroy message not have promot and view info
if not message["type"] in [
ModelMessageRoleType.VIEW,
ModelMessageRoleType.SYSTEM,
]:
message_type = message["type"]
message_content = message["data"]["content"]
history_text += (
message_type + ":" + message_content + prompt_template.sep
)
history_messages.append(
ModelMessage(role=message_type, content=message_content)
)
return history_text if str_message else history_messages

View File

@ -6,7 +6,6 @@ import re
import sqlparse
import pandas as pd
import chardet
import pandas as pd
import numpy as np
from pyparsing import (
CaselessKeyword,
@ -27,6 +26,8 @@ from pyparsing import (
from pilot.common.pd_utils import csv_colunm_foramt
from pilot.common.string_utils import is_chinese_include_number
logger = logging.getLogger(__name__)
def excel_colunm_format(old_name: str) -> str:
new_column = old_name.strip()
@ -263,7 +264,7 @@ class ExcelReader:
file_name = os.path.basename(file_path)
self.file_name_without_extension = os.path.splitext(file_name)[0]
encoding, confidence = detect_encoding(file_path)
logging.error(f"Detected Encoding: {encoding} (Confidence: {confidence})")
logger.error(f"Detected Encoding: {encoding} (Confidence: {confidence})")
self.excel_file_name = file_name
self.extension = os.path.splitext(file_name)[1]
# read excel file
@ -323,7 +324,7 @@ class ExcelReader:
colunms.append(descrip[0])
return colunms, results.fetchall()
except Exception as e:
logging.error("excel sql run error!", e)
logger.error(f"excel sql run error!, {str(e)}")
raise ValueError(f"Data Query Exception!\\nSQL[{sql}].\\nError:{str(e)}")
def get_df_by_sql_ex(self, sql):

View File

@ -37,7 +37,7 @@ class DbChatOutputParser(BaseOutputParser):
def parse_prompt_response(self, model_out_text):
clean_str = super().parse_prompt_response(model_out_text)
logging.info("clean prompt response:", clean_str)
logger.info(f"clean prompt response: {clean_str}")
# Compatible with community pure sql output model
if self.is_sql_statement(clean_str):
return SqlAction(clean_str, "")
@ -51,7 +51,7 @@ class DbChatOutputParser(BaseOutputParser):
thoughts = response[key]
return SqlAction(sql, thoughts)
except Exception as e:
logging.error("json load faild")
logger.error("json load faild")
return SqlAction("", clean_str)
def parse_view_response(self, speak, data, prompt_response) -> str:

View File

@ -24,7 +24,7 @@ class ExtractEntity(BaseChat):
self.user_input = chat_param["current_user_input"]
self.extract_mode = chat_param["select_param"]
def generate_input_values(self):
async def generate_input_values(self):
input_values = {
"text": self.user_input,
}

View File

@ -24,7 +24,7 @@ class ExtractTriplet(BaseChat):
self.user_input = chat_param["current_user_input"]
self.extract_mode = chat_param["select_param"]
def generate_input_values(self):
async def generate_input_values(self):
input_values = {
"text": self.user_input,
}

View File

@ -23,7 +23,7 @@ class ExtractRefineSummary(BaseChat):
self.existing_answer = chat_param["select_param"]
def generate_input_values(self):
async def generate_input_values(self):
input_values = {
# "context": self.user_input,
"existing_answer": self.existing_answer,

View File

@ -23,7 +23,7 @@ class ExtractSummary(BaseChat):
self.user_input = chat_param["select_param"]
def generate_input_values(self):
async def generate_input_values(self):
input_values = {
"context": self.user_input,
}

View File

@ -104,7 +104,7 @@ class ChatKnowledge(BaseChat):
self.current_user_input,
self.top_k,
)
self.sources = self.merge_by_key(
self.sources = _merge_by_key(
list(map(lambda doc: doc.metadata, docs)), "source"
)
@ -149,29 +149,6 @@ class ChatKnowledge(BaseChat):
)
return html
def merge_by_key(self, data, key):
result = {}
for item in data:
if item.get(key):
item_key = os.path.basename(item.get(key))
if item_key in result:
if "pages" in result[item_key] and "page" in item:
result[item_key]["pages"].append(str(item["page"]))
elif "page" in item:
result[item_key]["pages"] = [
result[item_key]["pages"],
str(item["page"]),
]
else:
if "page" in item:
result[item_key] = {
"source": item_key,
"pages": [str(item["page"])],
}
else:
result[item_key] = {"source": item_key}
return list(result.values())
@property
def chat_type(self) -> str:
return ChatScene.ChatKnowledge.value()
@ -179,3 +156,27 @@ class ChatKnowledge(BaseChat):
def get_space_context(self, space_name):
service = KnowledgeService()
return service.get_space_context(space_name)
def _merge_by_key(data, key):
result = {}
for item in data:
if item.get(key):
item_key = os.path.basename(item.get(key))
if item_key in result:
if "pages" in result[item_key] and "page" in item:
result[item_key]["pages"].append(str(item["page"]))
elif "page" in item:
result[item_key]["pages"] = [
result[item_key]["pages"],
str(item["page"]),
]
else:
if "page" in item:
result[item_key] = {
"source": item_key,
"pages": [str(item["page"])],
}
else:
result[item_key] = {"source": item_key}
return list(result.values())

View File

@ -0,0 +1,255 @@
from typing import Dict, Optional, List, Any
from dataclasses import dataclass
import datetime
import os
from pilot.awel import MapOperator
from pilot.prompts.prompt_new import PromptTemplate
from pilot.configs.config import Config
from pilot.scene.base import ChatScene
from pilot.scene.message import OnceConversation
from pilot.scene.base_message import ModelMessage, ModelMessageRoleType
from pilot.memory.chat_history.base import BaseChatHistoryMemory
from pilot.memory.chat_history.chat_hisotry_factory import ChatHistory
# TODO move global config
CFG = Config()
@dataclass
class ChatContext:
current_user_input: str
model_name: Optional[str]
chat_session_id: Optional[str] = None
select_param: Optional[str] = None
chat_scene: Optional[ChatScene] = ChatScene.ChatNormal
prompt_template: Optional[PromptTemplate] = None
chat_retention_rounds: Optional[int] = 0
history_storage: Optional[BaseChatHistoryMemory] = None
history_manager: Optional["ChatHistoryManager"] = None
# The input values for prompt template
input_values: Optional[Dict] = None
echo: Optional[bool] = False
def build_model_payload(self) -> Dict:
if not self.input_values:
raise ValueError("The input value can't be empty")
llm_messages = self.history_manager._new_chat(self.input_values)
return {
"model": self.model_name,
"prompt": "",
"messages": llm_messages,
"temperature": float(self.prompt_template.temperature),
"max_new_tokens": int(self.prompt_template.max_new_tokens),
"echo": self.echo,
}
class ChatHistoryManager:
def __init__(
self,
chat_ctx: ChatContext,
prompt_template: PromptTemplate,
history_storage: BaseChatHistoryMemory,
chat_retention_rounds: Optional[int] = 0,
) -> None:
self._chat_ctx = chat_ctx
self.chat_retention_rounds = chat_retention_rounds
self.current_message: OnceConversation = OnceConversation(
chat_ctx.chat_scene.value()
)
self.prompt_template = prompt_template
self.history_storage: BaseChatHistoryMemory = history_storage
self.history_message: List[OnceConversation] = history_storage.messages()
self.current_message.model_name = chat_ctx.model_name
if chat_ctx.select_param:
if len(chat_ctx.chat_scene.param_types()) > 0:
self.current_message.param_type = chat_ctx.chat_scene.param_types()[0]
self.current_message.param_value = chat_ctx.select_param
def _new_chat(self, input_values: Dict) -> List[ModelMessage]:
self.current_message.chat_order = len(self.history_message) + 1
self.current_message.add_user_message(self._chat_ctx.current_user_input)
self.current_message.start_date = datetime.datetime.now().strftime(
"%Y-%m-%d %H:%M:%S"
)
self.current_message.tokens = 0
if self.prompt_template.template:
current_prompt = self.prompt_template.format(**input_values)
self.current_message.add_system_message(current_prompt)
return self._generate_llm_messages()
def _generate_llm_messages(self) -> List[ModelMessage]:
from pilot.scene.base_chat import (
_load_system_message,
_load_example_messages,
_load_history_messages,
_load_user_message,
)
messages = []
### Load scene setting or character definition as system message
if self.prompt_template.template_define:
messages.append(
ModelMessage(
role=ModelMessageRoleType.SYSTEM,
content=self.prompt_template.template_define,
)
)
### Load prompt
messages += _load_system_message(
self.current_message, self.prompt_template, str_message=False
)
### Load examples
messages += _load_example_messages(self.prompt_template, str_message=False)
### Load History
messages += _load_history_messages(
self.prompt_template,
self.history_message,
self.chat_retention_rounds,
str_message=False,
)
### Load User Input
messages += _load_user_message(
self.current_message, self.prompt_template, str_message=False
)
return messages
class PromptManagerOperator(MapOperator[ChatContext, ChatContext]):
def __init__(self, prompt_template: PromptTemplate = None, **kwargs):
super().__init__(**kwargs)
self._prompt_template = prompt_template
async def map(self, input_value: ChatContext) -> ChatContext:
if not self._prompt_template:
self._prompt_template: PromptTemplate = (
CFG.prompt_template_registry.get_prompt_template(
input_value.chat_scene.value(),
language=CFG.LANGUAGE,
model_name=input_value.model_name,
proxyllm_backend=CFG.PROXYLLM_BACKEND,
)
)
input_value.prompt_template = self._prompt_template
return input_value
class ChatHistoryStorageOperator(MapOperator[ChatContext, ChatContext]):
def __init__(self, history: BaseChatHistoryMemory = None, **kwargs):
super().__init__(**kwargs)
self._history = history
async def map(self, input_value: ChatContext) -> ChatContext:
if self._history:
return self._history
chat_history_fac = ChatHistory()
input_value.history_storage = chat_history_fac.get_store_instance(
input_value.chat_session_id
)
return input_value
class ChatHistoryOperator(MapOperator[ChatContext, ChatContext]):
def __init__(self, history: BaseChatHistoryMemory = None, **kwargs):
super().__init__(**kwargs)
self._history = history
async def map(self, input_value: ChatContext) -> ChatContext:
history_storage = self._history or input_value.history_storage
if not history_storage:
from pilot.memory.chat_history.store_type.mem_history import (
MemHistoryMemory,
)
history_storage = MemHistoryMemory(input_value.chat_session_id)
input_value.history_storage = history_storage
input_value.history_manager = ChatHistoryManager(
input_value,
input_value.prompt_template,
history_storage,
input_value.chat_retention_rounds,
)
return input_value
class EmbeddingEngingOperator(MapOperator[ChatContext, ChatContext]):
def __init__(self, **kwargs):
super().__init__(**kwargs)
async def map(self, input_value: ChatContext) -> ChatContext:
from pilot.configs.model_config import EMBEDDING_MODEL_CONFIG
from pilot.embedding_engine.embedding_engine import EmbeddingEngine
from pilot.embedding_engine.embedding_factory import EmbeddingFactory
from pilot.scene.chat_knowledge.v1.chat import _merge_by_key
# TODO, decompose the current operator into some atomic operators
knowledge_space = input_value.select_param
vector_store_config = {
"vector_store_name": knowledge_space,
"vector_store_type": CFG.VECTOR_STORE_TYPE,
}
embedding_factory = self.system_app.get_component(
"embedding_factory", EmbeddingFactory
)
knowledge_embedding_client = EmbeddingEngine(
model_name=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
vector_store_config=vector_store_config,
embedding_factory=embedding_factory,
)
space_context = await self._get_space_context(knowledge_space)
top_k = (
CFG.KNOWLEDGE_SEARCH_TOP_SIZE
if space_context is None
else int(space_context["embedding"]["topk"])
)
max_token = (
CFG.KNOWLEDGE_SEARCH_MAX_TOKEN
if space_context is None or space_context.get("prompt") is None
else int(space_context["prompt"]["max_token"])
)
input_value.prompt_template.template_is_strict = False
if space_context and space_context.get("prompt"):
input_value.prompt_template.template_define = space_context["prompt"][
"scene"
]
input_value.prompt_template.template = space_context["prompt"]["template"]
docs = await self.blocking_func_to_async(
knowledge_embedding_client.similar_search,
input_value.current_user_input,
top_k,
)
sources = _merge_by_key(list(map(lambda doc: doc.metadata, docs)), "source")
if not docs or len(docs) == 0:
print("no relevant docs to retrieve")
context = "no relevant docs to retrieve"
else:
context = [d.page_content for d in docs]
context = context[:max_token]
relations = list(
set([os.path.basename(str(d.metadata.get("source", ""))) for d in docs])
)
input_value.input_values = {
"context": context,
"question": input_value.current_user_input,
"relations": relations,
}
return input_value
async def _get_space_context(self, space_name):
from pilot.server.knowledge.service import KnowledgeService
service = KnowledgeService()
return await self.blocking_func_to_async(service.get_space_context, space_name)
class BaseChatOperator(MapOperator[ChatContext, Dict]):
def __init__(self, **kwargs):
super().__init__(**kwargs)
async def map(self, input_value: ChatContext) -> Dict:
return input_value.build_model_payload()