mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-08 03:44:14 +00:00
feat(core): Support cross-service data recording and analyze (#665)
Close #659
This commit is contained in:
commit
1acb8da2dd
@ -15,7 +15,7 @@ IMAGE_NAME_ARGS=""
|
||||
PIP_INDEX_URL="https://pypi.org/simple"
|
||||
# en or zh
|
||||
LANGUAGE="en"
|
||||
BUILD_LOCAL_CODE="false"
|
||||
BUILD_LOCAL_CODE="true"
|
||||
LOAD_EXAMPLES="true"
|
||||
BUILD_NETWORK=""
|
||||
DB_GPT_INSTALL_MODEL="default"
|
||||
@ -26,7 +26,7 @@ usage () {
|
||||
echo " [-n|--image-name image name] Current image name, default: db-gpt"
|
||||
echo " [-i|--pip-index-url pip index url] Pip index url, default: https://pypi.org/simple"
|
||||
echo " [--language en or zh] You language, default: en"
|
||||
echo " [--build-local-code true or false] Whether to use the local project code to package the image, default: false"
|
||||
echo " [--build-local-code true or false] Whether to use the local project code to package the image, default: true"
|
||||
echo " [--load-examples true or false] Whether to load examples to default database default: true"
|
||||
echo " [--network network name] The network of docker build"
|
||||
echo " [--install-mode mode name] Installation mode name, default: default, If you completely use openai's service, you can set the mode name to 'openai'"
|
||||
|
309
docs/getting_started/observability.md
Normal file
309
docs/getting_started/observability.md
Normal file
@ -0,0 +1,309 @@
|
||||
# Debugging
|
||||
-------------
|
||||
|
||||
DB-GPT provides a set of tools to help you troubleshoot and resolve some of the issues you may encounter.
|
||||
|
||||
|
||||
## Trace Logs
|
||||
|
||||
DB-GPT writes some critical system runtime information to trace logs. By default, these are located in `logs/dbgpt*.jsonl`.
|
||||
|
||||
DB-GPT also offers a command-line tool, `dbgpt trace`, to help you analyze these trace logs. You can see its specific usage with the command `dbgpt trace --help`.
|
||||
|
||||
|
||||
## Viewing Chat Details
|
||||
|
||||
You can use the `dbgpt trace chat` command to view chat details. By default, it will display the latest chat message.
|
||||
|
||||
### Viewing Service Runtime Information
|
||||
|
||||
```bash
|
||||
dbgpt trace chat --hide_conv
|
||||
```
|
||||
|
||||
You will see an output like:
|
||||
|
||||
```
|
||||
+------------------------+--------------------------+-----------------------------+------------------------------------+
|
||||
| Config Key (Webserver) | Config Value (Webserver) | Config Key (EmbeddingModel) | Config Value (EmbeddingModel) |
|
||||
+------------------------+--------------------------+-----------------------------+------------------------------------+
|
||||
| host | 0.0.0.0 | model_name | text2vec |
|
||||
| port | 5000 | model_path | /app/models/text2vec-large-chinese |
|
||||
| daemon | False | device | cuda |
|
||||
| share | False | normalize_embeddings | None |
|
||||
| remote_embedding | False | | |
|
||||
| log_level | None | | |
|
||||
| light | False | | |
|
||||
+------------------------+--------------------------+-----------------------------+------------------------------------+
|
||||
+--------------------------+-----------------------------+----------------------------+------------------------------+
|
||||
| Config Key (ModelWorker) | Config Value (ModelWorker) | Config Key (WorkerManager) | Config Value (WorkerManager) |
|
||||
+--------------------------+-----------------------------+----------------------------+------------------------------+
|
||||
| model_name | vicuna-13b-v1.5 | model_name | vicuna-13b-v1.5 |
|
||||
| model_path | /app/models/vicuna-13b-v1.5 | model_path | /app/models/vicuna-13b-v1.5 |
|
||||
| device | cuda | worker_type | None |
|
||||
| model_type | huggingface | worker_class | None |
|
||||
| prompt_template | None | model_type | huggingface |
|
||||
| max_context_size | 4096 | host | 0.0.0.0 |
|
||||
| num_gpus | None | port | 5000 |
|
||||
| max_gpu_memory | None | daemon | False |
|
||||
| cpu_offloading | False | limit_model_concurrency | 5 |
|
||||
| load_8bit | False | standalone | True |
|
||||
| load_4bit | False | register | True |
|
||||
| quant_type | nf4 | worker_register_host | None |
|
||||
| use_double_quant | True | controller_addr | http://127.0.0.1:5000 |
|
||||
| compute_dtype | None | send_heartbeat | True |
|
||||
| trust_remote_code | True | heartbeat_interval | 20 |
|
||||
| verbose | False | log_level | None |
|
||||
+--------------------------+-----------------------------+----------------------------+------------------------------+
|
||||
```
|
||||
|
||||
### Viewing the Latest Chat Message
|
||||
|
||||
```bash
|
||||
dbgpt trace chat --hide_run_params
|
||||
```
|
||||
|
||||
You will see an output like:
|
||||
|
||||
```
|
||||
+-------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| Chat Trace Details |
|
||||
+----------------+--------------------------------------------------------------------------------------------------------------------------+
|
||||
| Key | Value Value |
|
||||
+----------------+--------------------------------------------------------------------------------------------------------------------------+
|
||||
| trace_id | 5d1900c3-5aad-4159-9946-fbb600666530 |
|
||||
| span_id | 5d1900c3-5aad-4159-9946-fbb600666530:14772034-bed4-4b4e-b43f-fcf3a8aad6a7 |
|
||||
| conv_uid | 5e456272-68ac-11ee-9fba-0242ac150003 |
|
||||
| user_input | Who are you? |
|
||||
| chat_mode | chat_normal |
|
||||
| select_param | None |
|
||||
| model_name | vicuna-13b-v1.5 |
|
||||
| temperature | 0.6 |
|
||||
| max_new_tokens | 1024 |
|
||||
| echo | False |
|
||||
| llm_adapter | FastChatLLMModelAdaperWrapper(fastchat.model.model_adapter.VicunaAdapter) |
|
||||
| User prompt | A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polit |
|
||||
| | e answers to the user's questions. USER: Who are you? ASSISTANT: |
|
||||
| Model output | You can call me Vicuna, and I was trained by Large Model Systems Organization (LMSYS) researchers as a language model. |
|
||||
+----------------+--------------------------------------------------------------------------------------------------------------------------+
|
||||
```
|
||||
|
||||
|
||||
### Viewing Chat Details and Call Chain
|
||||
|
||||
```bash
|
||||
dbgpt trace chat --hide_run_params --tree
|
||||
```
|
||||
|
||||
You will see an output like:
|
||||
|
||||
```
|
||||
|
||||
Invoke Trace Tree:
|
||||
|
||||
Operation: DB-GPT-Web-Entry (Start: 2023-10-12 03:06:43.180, End: None)
|
||||
Operation: get_chat_instance (Start: 2023-10-12 03:06:43.258, End: None)
|
||||
Operation: get_chat_instance (Start: 2023-10-12 03:06:43.258, End: 2023-10-12 03:06:43.424)
|
||||
Operation: stream_generator (Start: 2023-10-12 03:06:43.425, End: None)
|
||||
Operation: BaseChat.stream_call (Start: 2023-10-12 03:06:43.426, End: None)
|
||||
Operation: WorkerManager.generate_stream (Start: 2023-10-12 03:06:43.426, End: None)
|
||||
Operation: DefaultModelWorker.generate_stream (Start: 2023-10-12 03:06:43.428, End: None)
|
||||
Operation: DefaultModelWorker_call.generate_stream_func (Start: 2023-10-12 03:06:43.430, End: None)
|
||||
Operation: DefaultModelWorker_call.generate_stream_func (Start: 2023-10-12 03:06:43.430, End: 2023-10-12 03:06:48.518)
|
||||
Operation: DefaultModelWorker.generate_stream (Start: 2023-10-12 03:06:43.428, End: 2023-10-12 03:06:48.518)
|
||||
Operation: WorkerManager.generate_stream (Start: 2023-10-12 03:06:43.426, End: 2023-10-12 03:06:48.518)
|
||||
Operation: BaseChat.stream_call (Start: 2023-10-12 03:06:43.426, End: 2023-10-12 03:06:48.519)
|
||||
Operation: stream_generator (Start: 2023-10-12 03:06:43.425, End: 2023-10-12 03:06:48.519)
|
||||
Operation: DB-GPT-Web-Entry (Start: 2023-10-12 03:06:43.180, End: 2023-10-12 03:06:43.257)
|
||||
+-------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| Chat Trace Details |
|
||||
+----------------+--------------------------------------------------------------------------------------------------------------------------+
|
||||
| Key | Value Value |
|
||||
+----------------+--------------------------------------------------------------------------------------------------------------------------+
|
||||
| trace_id | 5d1900c3-5aad-4159-9946-fbb600666530 |
|
||||
| span_id | 5d1900c3-5aad-4159-9946-fbb600666530:14772034-bed4-4b4e-b43f-fcf3a8aad6a7 |
|
||||
| conv_uid | 5e456272-68ac-11ee-9fba-0242ac150003 |
|
||||
| user_input | Who are you? |
|
||||
| chat_mode | chat_normal |
|
||||
| select_param | None |
|
||||
| model_name | vicuna-13b-v1.5 |
|
||||
| temperature | 0.6 |
|
||||
| max_new_tokens | 1024 |
|
||||
| echo | False |
|
||||
| llm_adapter | FastChatLLMModelAdaperWrapper(fastchat.model.model_adapter.VicunaAdapter) |
|
||||
| User prompt | A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polit |
|
||||
| | e answers to the user's questions. USER: Who are you? ASSISTANT: |
|
||||
| Model output | You can call me Vicuna, and I was trained by Large Model Systems Organization (LMSYS) researchers as a language model. |
|
||||
+----------------+--------------------------------------------------------------------------------------------------------------------------+
|
||||
```
|
||||
|
||||
### Viewing Chat Details Based on trace_id
|
||||
|
||||
```bash
|
||||
dbgpt trace chat --hide_run_params --trace_id ec30d733-7b35-4d61-b02e-2832fd2e29ff
|
||||
```
|
||||
|
||||
You will see an output like:
|
||||
|
||||
```
|
||||
+-------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| Chat Trace Details |
|
||||
+----------------+--------------------------------------------------------------------------------------------------------------------------+
|
||||
| Key | Value Value |
|
||||
+----------------+--------------------------------------------------------------------------------------------------------------------------+
|
||||
| trace_id | ec30d733-7b35-4d61-b02e-2832fd2e29ff |
|
||||
| span_id | ec30d733-7b35-4d61-b02e-2832fd2e29ff:0482a0c5-38b3-4b38-8101-e42489f90ccd |
|
||||
| conv_uid | 87a722de-68ae-11ee-9fba-0242ac150003 |
|
||||
| user_input | Hello |
|
||||
| chat_mode | chat_normal |
|
||||
| select_param | None |
|
||||
| model_name | vicuna-13b-v1.5 |
|
||||
| temperature | 0.6 |
|
||||
| max_new_tokens | 1024 |
|
||||
| echo | False |
|
||||
| llm_adapter | FastChatLLMModelAdaperWrapper(fastchat.model.model_adapter.VicunaAdapter) |
|
||||
| User prompt | A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polit |
|
||||
| | e answers to the user's questions. USER: Hello ASSISTANT: |
|
||||
| Model output | Hello! How can I help you today? Is there something specific you want to know or talk about? I'm here to answer any ques |
|
||||
| | tions you might have, to the best of my ability. |
|
||||
+----------------+--------------------------------------------------------------------------------------------------------------------------+
|
||||
```
|
||||
|
||||
### More `chat` Usage
|
||||
|
||||
```bash
|
||||
dbgpt trace chat --help
|
||||
```
|
||||
|
||||
```
|
||||
Usage: dbgpt trace chat [OPTIONS] [FILES]...
|
||||
|
||||
Show conversation details
|
||||
|
||||
Options:
|
||||
--trace_id TEXT Specify the trace ID to analyze. If None,
|
||||
show latest conversation details
|
||||
--tree Display trace spans as a tree
|
||||
--hide_conv Hide your conversation details
|
||||
--hide_run_params Hide run params
|
||||
--output [text|html|csv|latex|json]
|
||||
The output format
|
||||
--help Show this message and exit.
|
||||
```
|
||||
|
||||
## Viewing Call Tree Based on `trace_id`
|
||||
|
||||
```bash
|
||||
dbgpt trace tree --trace_id ec30d733-7b35-4d61-b02e-2832fd2e29ff
|
||||
```
|
||||
|
||||
You will see an output like:
|
||||
|
||||
```
|
||||
Operation: DB-GPT-Web-Entry (Start: 2023-10-12 03:22:10.592, End: None)
|
||||
Operation: get_chat_instance (Start: 2023-10-12 03:22:10.594, End: None)
|
||||
Operation: get_chat_instance (Start: 2023-10-12 03:22:10.594, End: 2023-10-12 03:22:10.658)
|
||||
Operation: stream_generator (Start: 2023-10-12 03:22:10.659, End: None)
|
||||
Operation: BaseChat.stream_call (Start: 2023-10-12 03:22:10.659, End: None)
|
||||
Operation: WorkerManager.generate_stream (Start: 2023-10-12 03:22:10.660, End: None)
|
||||
Operation: DefaultModelWorker.generate_stream (Start: 2023-10-12 03:22:10.675, End: None)
|
||||
Operation: DefaultModelWorker_call.generate_stream_func (Start: 2023-10-12 03:22:10.676, End: None)
|
||||
Operation: DefaultModelWorker_call.generate_stream_func (Start: 2023-10-12 03:22:10.676, End: 2023-10-12 03:22:16.130)
|
||||
Operation: DefaultModelWorker.generate_stream (Start: 2023-10-12 03:22:10.675, End: 2023-10-12 03:22:16.130)
|
||||
Operation: WorkerManager.generate_stream (Start: 2023-10-12 03:22:10.660, End: 2023-10-12 03:22:16.130)
|
||||
Operation: BaseChat.stream_call (Start: 2023-10-12 03:22:10.659, End: 2023-10-12 03:22:16.130)
|
||||
Operation: stream_generator (Start: 2023-10-12 03:22:10.659, End: 2023-10-12 03:22:16.130)
|
||||
Operation: DB-GPT-Web-Entry (Start: 2023-10-12 03:22:10.592, End: 2023-10-12 03:22:10.673)
|
||||
```
|
||||
|
||||
|
||||
## Listing Trace Information
|
||||
|
||||
### Listing All Trace Information
|
||||
|
||||
|
||||
```bash
|
||||
dbgpt trace list
|
||||
```
|
||||
|
||||
You will see an output like:
|
||||
```
|
||||
+--------------------------------------+---------------------------------------------------------------------------+-----------------------------------+------------------+
|
||||
| Trace ID | Span ID | Operation Name | Conversation UID |
|
||||
+--------------------------------------+---------------------------------------------------------------------------+-----------------------------------+------------------+
|
||||
| eaf4830f-976f-45a4-9a50-244f3ab6f9e1 | eaf4830f-976f-45a4-9a50-244f3ab6f9e1:f650065f-f761-4790-99f7-8109c15f756a | run_webserver | None |
|
||||
| eaf4830f-976f-45a4-9a50-244f3ab6f9e1 | eaf4830f-976f-45a4-9a50-244f3ab6f9e1:b2ff279e-0557-4b2d-8959-85e25dcfe94e | EmbeddingLoader.load | None |
|
||||
| eaf4830f-976f-45a4-9a50-244f3ab6f9e1 | eaf4830f-976f-45a4-9a50-244f3ab6f9e1:b2ff279e-0557-4b2d-8959-85e25dcfe94e | EmbeddingLoader.load | None |
|
||||
| eaf4830f-976f-45a4-9a50-244f3ab6f9e1 | eaf4830f-976f-45a4-9a50-244f3ab6f9e1:3e8b1b9d-5ef2-4382-af62-6b2b21cc04fd | WorkerManager._start_local_worker | None |
|
||||
| eaf4830f-976f-45a4-9a50-244f3ab6f9e1 | eaf4830f-976f-45a4-9a50-244f3ab6f9e1:3e8b1b9d-5ef2-4382-af62-6b2b21cc04fd | WorkerManager._start_local_worker | None |
|
||||
| eaf4830f-976f-45a4-9a50-244f3ab6f9e1 | eaf4830f-976f-45a4-9a50-244f3ab6f9e1:4c280ec9-0fd6-4ee8-b79f-1afcab0f9901 | DefaultModelWorker.start | None |
|
||||
+--------------------------------------+---------------------------------------------------------------------------+-----------------------------------+------------------+
|
||||
```
|
||||
|
||||
### Listing Trace Information by Trace Type
|
||||
|
||||
```bash
|
||||
dbgpt trace list --span_type chat
|
||||
```
|
||||
|
||||
You will see an output like:
|
||||
```
|
||||
+--------------------------------------+---------------------------------------------------------------------------+-------------------+--------------------------------------+
|
||||
| Trace ID | Span ID | Operation Name | Conversation UID |
|
||||
+--------------------------------------+---------------------------------------------------------------------------+-------------------+--------------------------------------+
|
||||
| 5d1900c3-5aad-4159-9946-fbb600666530 | 5d1900c3-5aad-4159-9946-fbb600666530:14772034-bed4-4b4e-b43f-fcf3a8aad6a7 | get_chat_instance | 5e456272-68ac-11ee-9fba-0242ac150003 |
|
||||
| 5d1900c3-5aad-4159-9946-fbb600666530 | 5d1900c3-5aad-4159-9946-fbb600666530:14772034-bed4-4b4e-b43f-fcf3a8aad6a7 | get_chat_instance | 5e456272-68ac-11ee-9fba-0242ac150003 |
|
||||
| ec30d733-7b35-4d61-b02e-2832fd2e29ff | ec30d733-7b35-4d61-b02e-2832fd2e29ff:0482a0c5-38b3-4b38-8101-e42489f90ccd | get_chat_instance | 87a722de-68ae-11ee-9fba-0242ac150003 |
|
||||
| ec30d733-7b35-4d61-b02e-2832fd2e29ff | ec30d733-7b35-4d61-b02e-2832fd2e29ff:0482a0c5-38b3-4b38-8101-e42489f90ccd | get_chat_instance | 87a722de-68ae-11ee-9fba-0242ac150003 |
|
||||
+--------------------------------------+---------------------------------------------------------------------------+-------------------+--------------------------------------+
|
||||
```
|
||||
|
||||
### Searching Trace Information
|
||||
|
||||
```bash
|
||||
dbgpt trace list --search Hello
|
||||
```
|
||||
|
||||
You will see an output like:
|
||||
```
|
||||
+--------------------------------------+---------------------------------------------------------------------------+----------------------------------------------+--------------------------------------+
|
||||
| Trace ID | Span ID | Operation Name | Conversation UID |
|
||||
+--------------------------------------+---------------------------------------------------------------------------+----------------------------------------------+--------------------------------------+
|
||||
| ec30d733-7b35-4d61-b02e-2832fd2e29ff | ec30d733-7b35-4d61-b02e-2832fd2e29ff:0482a0c5-38b3-4b38-8101-e42489f90ccd | get_chat_instance | 87a722de-68ae-11ee-9fba-0242ac150003 |
|
||||
| ec30d733-7b35-4d61-b02e-2832fd2e29ff | ec30d733-7b35-4d61-b02e-2832fd2e29ff:0482a0c5-38b3-4b38-8101-e42489f90ccd | get_chat_instance | 87a722de-68ae-11ee-9fba-0242ac150003 |
|
||||
| ec30d733-7b35-4d61-b02e-2832fd2e29ff | ec30d733-7b35-4d61-b02e-2832fd2e29ff:03de6c87-34d6-426a-85e8-7d46d475411e | BaseChat.stream_call | None |
|
||||
| ec30d733-7b35-4d61-b02e-2832fd2e29ff | ec30d733-7b35-4d61-b02e-2832fd2e29ff:03de6c87-34d6-426a-85e8-7d46d475411e | BaseChat.stream_call | None |
|
||||
| ec30d733-7b35-4d61-b02e-2832fd2e29ff | ec30d733-7b35-4d61-b02e-2832fd2e29ff:19593596-b4c7-4d15-a3c1-0924d86098dd | DefaultModelWorker_call.generate_stream_func | None |
|
||||
| ec30d733-7b35-4d61-b02e-2832fd2e29ff | ec30d733-7b35-4d61-b02e-2832fd2e29ff:19593596-b4c7-4d15-a3c1-0924d86098dd | DefaultModelWorker_call.generate_stream_func | None |
|
||||
+--------------------------------------+---------------------------------------------------------------------------+----------------------------------------------+--------------------------------------+
|
||||
```
|
||||
|
||||
### More `list` Usage
|
||||
|
||||
```bash
|
||||
dbgpt trace list --help
|
||||
```
|
||||
|
||||
```
|
||||
Usage: dbgpt trace list [OPTIONS] [FILES]...
|
||||
|
||||
List your trace spans
|
||||
|
||||
Options:
|
||||
--trace_id TEXT Specify the trace ID to list
|
||||
--span_id TEXT Specify the Span ID to list.
|
||||
--span_type TEXT Specify the Span Type to list.
|
||||
--parent_span_id TEXT Specify the Parent Span ID to list.
|
||||
--search TEXT Search trace_id, span_id, parent_span_id,
|
||||
operation_name or content in metadata.
|
||||
-l, --limit INTEGER Limit the number of recent span displayed.
|
||||
--start_time TEXT Filter by start time. Format: "YYYY-MM-DD
|
||||
HH:MM:SS.mmm"
|
||||
--end_time TEXT Filter by end time. Format: "YYYY-MM-DD
|
||||
HH:MM:SS.mmm"
|
||||
--desc Whether to use reverse sorting. By default,
|
||||
sorting is based on start time.
|
||||
--output [text|html|csv|latex|json]
|
||||
The output format
|
||||
--help Show this message and exit.
|
||||
```
|
@ -53,6 +53,7 @@ Getting Started
|
||||
getting_started/concepts.md
|
||||
getting_started/tutorials.md
|
||||
getting_started/faq.rst
|
||||
getting_started/observability.md
|
||||
|
||||
|
||||
Modules
|
||||
|
121
docs/locales/zh_CN/LC_MESSAGES/getting_started/observability.po
Normal file
121
docs/locales/zh_CN/LC_MESSAGES/getting_started/observability.po
Normal file
@ -0,0 +1,121 @@
|
||||
# SOME DESCRIPTIVE TITLE.
|
||||
# Copyright (C) 2023, csunny
|
||||
# This file is distributed under the same license as the DB-GPT package.
|
||||
# FIRST AUTHOR <EMAIL@ADDRESS>, 2023.
|
||||
#
|
||||
#, fuzzy
|
||||
msgid ""
|
||||
msgstr ""
|
||||
"Project-Id-Version: DB-GPT 👏👏 0.3.9\n"
|
||||
"Report-Msgid-Bugs-To: \n"
|
||||
"POT-Creation-Date: 2023-10-12 11:54+0800\n"
|
||||
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
|
||||
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
|
||||
"Language: zh_CN\n"
|
||||
"Language-Team: zh_CN <LL@li.org>\n"
|
||||
"Plural-Forms: nplurals=1; plural=0;\n"
|
||||
"MIME-Version: 1.0\n"
|
||||
"Content-Type: text/plain; charset=utf-8\n"
|
||||
"Content-Transfer-Encoding: 8bit\n"
|
||||
"Generated-By: Babel 2.12.1\n"
|
||||
|
||||
#: ../../getting_started/observability.md:1 c88ce18295444597baa7355efc79ab15
|
||||
msgid "Debugging"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/observability.md:4 522a4e83c62c493381ca3a452ced8ecf
|
||||
msgid ""
|
||||
"DB-GPT provides a set of tools to help you troubleshoot and resolve some "
|
||||
"of the issues you may encounter."
|
||||
msgstr ""
|
||||
"DB-GPT 提供了一套工具来帮助你排查和解决一些遇到的问题。"
|
||||
|
||||
#: ../../getting_started/observability.md:7 7fe5b8ab29194e42b74a8ab3e77006c7
|
||||
msgid "Trace Logs"
|
||||
msgstr "追踪日志"
|
||||
|
||||
#: ../../getting_started/observability.md:9 8a55f7a2b5a247d49728969f179bf50d
|
||||
msgid ""
|
||||
"DB-GPT writes some critical system runtime information to trace logs. By "
|
||||
"default, these are located in `logs/dbgpt*.jsonl`."
|
||||
msgstr ""
|
||||
"DB-GPT 会将一些系统运行的关键的信息写入到追踪日志中,默认情况下,在 `logs/dbgpt*.jsonl` 中。"
|
||||
|
||||
#: ../../getting_started/observability.md:11 5e2b847179e9427a8ae022b5338cbbd9
|
||||
msgid ""
|
||||
"DB-GPT also offers a command-line tool, `dbgpt trace`, to help you "
|
||||
"analyze these trace logs. You can see its specific usage with the command"
|
||||
" `dbgpt trace --help`."
|
||||
msgstr ""
|
||||
"DB-GPT 也提供了命令工具 `dbgpt trace` 命令来帮助你分析追踪日志,你可以使用命令 `dbgpt trace --help` 来查看具体的用法。"
|
||||
|
||||
#: ../../getting_started/observability.md:14 6e0c9c4ba6ac4eb49d9289b0d63f77fb
|
||||
msgid "查看对话详情"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/observability.md:16 b9badbab74de47f192ff117d7d36fa72
|
||||
msgid ""
|
||||
"You can use the `dbgpt trace chat` command to view chat details. By "
|
||||
"default, it will display the latest chat message."
|
||||
msgstr ""
|
||||
"你可以使用 `dbgpt trace chat` 命令来查看对话信息,默认情况会显示你最新的一条对话信息。"
|
||||
|
||||
#: ../../getting_started/observability.md:18 55c7466bd80d43c9a355d87daf2a2be7
|
||||
msgid "Viewing Service Runtime Information"
|
||||
msgstr "查看服务运行信息"
|
||||
|
||||
#: ../../getting_started/observability.md:24
|
||||
#: ../../getting_started/observability.md:66
|
||||
#: ../../getting_started/observability.md:98
|
||||
#: ../../getting_started/observability.md:146
|
||||
#: ../../getting_started/observability.md:200
|
||||
#: ../../getting_started/observability.md:229
|
||||
#: ../../getting_started/observability.md:249
|
||||
#: ../../getting_started/observability.md:267 18907a58a0c3493aa24c17e367309471
|
||||
#: 387f08b6cd864a7682522b5a40863e79 5fe0baa5803d4ca5ad0e8cbd8a859c8c
|
||||
#: 7abbfdd996444999a24cbad852d2e545 957bdf6826e045608c8c3ebd06c8fe76
|
||||
#: acddf2cdf8c94bd6864d66739fa26459 f3fcaf2b47774779bad2feb3ef4318c4
|
||||
#: f99bb110024443f68cc8b7f19956eff4
|
||||
msgid "You will see an output like:"
|
||||
msgstr "你将会看到类似的输出:"
|
||||
|
||||
#: ../../getting_started/observability.md:60 5c8c213a5bac434bb3defe6611a03813
|
||||
msgid "Viewing the Latest Chat Message"
|
||||
msgstr "查看最近的一条对话信息"
|
||||
|
||||
#: ../../getting_started/observability.md:92 ce19873d8e754173849d14eaeab963d2
|
||||
msgid "Viewing Chat Details and Call Chain"
|
||||
msgstr "查看对话信息和调用链路"
|
||||
|
||||
#: ../../getting_started/observability.md:140 36bcc37971ce4d6682f1ea32e2e9a980
|
||||
msgid "Viewing Chat Details Based on trace_id"
|
||||
msgstr "根据 `trace_id` 查看对应的对话信息"
|
||||
|
||||
#: ../../getting_started/observability.md:172 c74968492f7544758c9d95fa831c4fcf
|
||||
msgid "More `chat` Usage"
|
||||
msgstr "更多 `chat` 用法"
|
||||
|
||||
#: ../../getting_started/observability.md:194 c2e5a7e7b1ee40fea15790d66b79eb11
|
||||
msgid "Viewing Call Tree Based on `trace_id`"
|
||||
msgstr "根据 `trace_id` 查看调用树"
|
||||
|
||||
#: ../../getting_started/observability.md:220 6bd64d2ad0ce442e8e81aa1ae7dd2189
|
||||
msgid "Listing Trace Information"
|
||||
msgstr "列出追踪信息"
|
||||
|
||||
#: ../../getting_started/observability.md:222 ce643441e8744ab09fcbd4081d2adb4a
|
||||
msgid "Listing All Trace Information"
|
||||
msgstr "列出全部追踪信息"
|
||||
|
||||
#: ../../getting_started/observability.md:243 374376d81ed54bc2a450505abfe7dc6d
|
||||
msgid "Listing Trace Information by Trace Type"
|
||||
msgstr "根据追踪类型列出追踪信息"
|
||||
|
||||
#: ../../getting_started/observability.md:261 8fc08a9c924d47309dc7062811c4fb62
|
||||
msgid "Searching Trace Information"
|
||||
msgstr "搜索追踪信息"
|
||||
|
||||
#: ../../getting_started/observability.md:281 3681413d196144389431422010a7e30f
|
||||
msgid "More `list` Usage"
|
||||
msgstr "更多 `list` 用法"
|
||||
|
@ -47,6 +47,8 @@ class ComponentType(str, Enum):
|
||||
WORKER_MANAGER_FACTORY = "dbgpt_worker_manager_factory"
|
||||
MODEL_CONTROLLER = "dbgpt_model_controller"
|
||||
EXECUTOR_DEFAULT = "dbgpt_thread_pool_default"
|
||||
TRACER = "dbgpt_tracer"
|
||||
TRACER_SPAN_STORAGE = "dbgpt_tracer_span_storage"
|
||||
|
||||
|
||||
class BaseComponent(LifeCycle, ABC):
|
||||
@ -70,6 +72,8 @@ class BaseComponent(LifeCycle, ABC):
|
||||
|
||||
T = TypeVar("T", bound=BaseComponent)
|
||||
|
||||
_EMPTY_DEFAULT_COMPONENT = "_EMPTY_DEFAULT_COMPONENT"
|
||||
|
||||
|
||||
class SystemApp(LifeCycle):
|
||||
"""Main System Application class that manages the lifecycle and registration of components."""
|
||||
@ -104,13 +108,18 @@ class SystemApp(LifeCycle):
|
||||
instance.init_app(self)
|
||||
|
||||
def get_component(
|
||||
self, name: Union[str, ComponentType], component_type: Type[T]
|
||||
self,
|
||||
name: Union[str, ComponentType],
|
||||
component_type: Type[T],
|
||||
default_component=_EMPTY_DEFAULT_COMPONENT,
|
||||
) -> T:
|
||||
"""Retrieve a registered component by its name and type."""
|
||||
if isinstance(name, ComponentType):
|
||||
name = name.value
|
||||
component = self.components.get(name)
|
||||
if not component:
|
||||
if default_component != _EMPTY_DEFAULT_COMPONENT:
|
||||
return default_component
|
||||
raise ValueError(f"No component found with name {name}")
|
||||
if not isinstance(component, component_type):
|
||||
raise TypeError(f"Component {name} is not of type {component_type}")
|
||||
|
@ -354,7 +354,7 @@ class LlamaCppAdapater(BaseLLMAdaper):
|
||||
if not path.is_file():
|
||||
model_paths = list(path.glob("*ggml*.gguf"))
|
||||
if not model_paths:
|
||||
return False
|
||||
return False, None
|
||||
model_path = str(model_paths[0])
|
||||
logger.warn(
|
||||
f"Model path {model_path} is not single file, use first *gglm*.gguf model file: {model_path}"
|
||||
|
@ -53,6 +53,9 @@ class ModelOutput:
|
||||
error_code: int
|
||||
model_context: Dict = None
|
||||
|
||||
def to_dict(self) -> Dict:
|
||||
return asdict(self)
|
||||
|
||||
|
||||
@dataclass
|
||||
class WorkerApplyOutput:
|
||||
|
@ -18,11 +18,13 @@ class PromptRequest(BaseModel):
|
||||
max_new_tokens: int = None
|
||||
stop: str = None
|
||||
echo: bool = True
|
||||
span_id: str = None
|
||||
|
||||
|
||||
class EmbeddingsRequest(BaseModel):
|
||||
model: str
|
||||
input: List[str]
|
||||
span_id: str = None
|
||||
|
||||
|
||||
class WorkerApplyRequest(BaseModel):
|
||||
|
@ -3,6 +3,8 @@ from __future__ import annotations
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from pilot.model.parameter import BaseEmbeddingModelParameters
|
||||
from pilot.utils.parameter_utils import _get_dict_from_obj
|
||||
from pilot.utils.tracer import root_tracer, SpanType, SpanTypeRunName
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from langchain.embeddings.base import Embeddings
|
||||
@ -15,13 +17,21 @@ class EmbeddingLoader:
|
||||
def load(
|
||||
self, model_name: str, param: BaseEmbeddingModelParameters
|
||||
) -> "Embeddings":
|
||||
# add more models
|
||||
if model_name in ["proxy_openai", "proxy_azure"]:
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
metadata = {
|
||||
"model_name": model_name,
|
||||
"run_service": SpanTypeRunName.EMBEDDING_MODEL.value,
|
||||
"params": _get_dict_from_obj(param),
|
||||
}
|
||||
with root_tracer.start_span(
|
||||
"EmbeddingLoader.load", span_type=SpanType.RUN, metadata=metadata
|
||||
):
|
||||
# add more models
|
||||
if model_name in ["proxy_openai", "proxy_azure"]:
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
|
||||
return OpenAIEmbeddings(**param.build_kwargs())
|
||||
else:
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
return OpenAIEmbeddings(**param.build_kwargs())
|
||||
else:
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
|
||||
kwargs = param.build_kwargs(model_name=param.model_path)
|
||||
return HuggingFaceEmbeddings(**kwargs)
|
||||
kwargs = param.build_kwargs(model_name=param.model_path)
|
||||
return HuggingFaceEmbeddings(**kwargs)
|
||||
|
@ -9,7 +9,8 @@ from pilot.model.loader import ModelLoader, _get_model_real_path
|
||||
from pilot.model.parameter import ModelParameters
|
||||
from pilot.model.cluster.worker_base import ModelWorker
|
||||
from pilot.utils.model_utils import _clear_model_cache
|
||||
from pilot.utils.parameter_utils import EnvArgumentParser
|
||||
from pilot.utils.parameter_utils import EnvArgumentParser, _get_dict_from_obj
|
||||
from pilot.utils.tracer import root_tracer, SpanType, SpanTypeRunName
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -94,9 +95,20 @@ class DefaultModelWorker(ModelWorker):
|
||||
model_params = self.parse_parameters(command_args)
|
||||
self._model_params = model_params
|
||||
logger.info(f"Begin load model, model params: {model_params}")
|
||||
self.model, self.tokenizer = self.ml.loader_with_params(
|
||||
model_params, self.llm_adapter
|
||||
)
|
||||
metadata = {
|
||||
"model_name": self.model_name,
|
||||
"model_path": self.model_path,
|
||||
"model_type": self.llm_adapter.model_type(),
|
||||
"llm_adapter": str(self.llm_adapter),
|
||||
"run_service": SpanTypeRunName.MODEL_WORKER,
|
||||
"params": _get_dict_from_obj(model_params),
|
||||
}
|
||||
with root_tracer.start_span(
|
||||
"DefaultModelWorker.start", span_type=SpanType.RUN, metadata=metadata
|
||||
):
|
||||
self.model, self.tokenizer = self.ml.loader_with_params(
|
||||
model_params, self.llm_adapter
|
||||
)
|
||||
|
||||
def stop(self) -> None:
|
||||
if not self.model:
|
||||
@ -109,9 +121,18 @@ class DefaultModelWorker(ModelWorker):
|
||||
_clear_model_cache(self._model_params.device)
|
||||
|
||||
def generate_stream(self, params: Dict) -> Iterator[ModelOutput]:
|
||||
span = root_tracer.start_span(
|
||||
"DefaultModelWorker.generate_stream", params.get("span_id")
|
||||
)
|
||||
try:
|
||||
params, model_context, generate_stream_func = self._prepare_generate_stream(
|
||||
params
|
||||
(
|
||||
params,
|
||||
model_context,
|
||||
generate_stream_func,
|
||||
model_span,
|
||||
) = self._prepare_generate_stream(
|
||||
params,
|
||||
span_operation_name="DefaultModelWorker_call.generate_stream_func",
|
||||
)
|
||||
|
||||
previous_response = ""
|
||||
@ -127,8 +148,12 @@ class DefaultModelWorker(ModelWorker):
|
||||
print(
|
||||
f"\n\nfull stream output:\n{previous_response}\n\nmodel generate_stream params:\n{params}"
|
||||
)
|
||||
model_span.end(metadata={"output": previous_response})
|
||||
span.end()
|
||||
except Exception as e:
|
||||
yield self._handle_exception(e)
|
||||
output = self._handle_exception(e)
|
||||
yield output
|
||||
span.end(metadata={"error": output.to_dict()})
|
||||
|
||||
def generate(self, params: Dict) -> ModelOutput:
|
||||
"""Generate non stream result"""
|
||||
@ -141,9 +166,18 @@ class DefaultModelWorker(ModelWorker):
|
||||
raise NotImplementedError
|
||||
|
||||
async def async_generate_stream(self, params: Dict) -> Iterator[ModelOutput]:
|
||||
span = root_tracer.start_span(
|
||||
"DefaultModelWorker.async_generate_stream", params.get("span_id")
|
||||
)
|
||||
try:
|
||||
params, model_context, generate_stream_func = self._prepare_generate_stream(
|
||||
params
|
||||
(
|
||||
params,
|
||||
model_context,
|
||||
generate_stream_func,
|
||||
model_span,
|
||||
) = self._prepare_generate_stream(
|
||||
params,
|
||||
span_operation_name="DefaultModelWorker_call.generate_stream_func",
|
||||
)
|
||||
|
||||
previous_response = ""
|
||||
@ -159,8 +193,12 @@ class DefaultModelWorker(ModelWorker):
|
||||
print(
|
||||
f"\n\nfull stream output:\n{previous_response}\n\nmodel generate_stream params:\n{params}"
|
||||
)
|
||||
model_span.end(metadata={"output": previous_response})
|
||||
span.end()
|
||||
except Exception as e:
|
||||
yield self._handle_exception(e)
|
||||
output = self._handle_exception(e)
|
||||
yield output
|
||||
span.end(metadata={"error": output.to_dict()})
|
||||
|
||||
async def async_generate(self, params: Dict) -> ModelOutput:
|
||||
output = None
|
||||
@ -168,7 +206,7 @@ class DefaultModelWorker(ModelWorker):
|
||||
output = out
|
||||
return output
|
||||
|
||||
def _prepare_generate_stream(self, params: Dict):
|
||||
def _prepare_generate_stream(self, params: Dict, span_operation_name: str):
|
||||
params, model_context = self.llm_adapter.model_adaptation(
|
||||
params,
|
||||
self.model_name,
|
||||
@ -190,7 +228,30 @@ class DefaultModelWorker(ModelWorker):
|
||||
)
|
||||
str_prompt = params.get("prompt")
|
||||
print(f"model prompt: \n\n{str_prompt}\n\n{stream_type}stream output:\n")
|
||||
return params, model_context, generate_stream_func
|
||||
|
||||
generate_stream_func_str_name = "{}.{}".format(
|
||||
generate_stream_func.__module__, generate_stream_func.__name__
|
||||
)
|
||||
|
||||
span_params = {k: v for k, v in params.items()}
|
||||
if "messages" in span_params:
|
||||
span_params["messages"] = list(
|
||||
map(lambda m: m.dict(), span_params["messages"])
|
||||
)
|
||||
|
||||
model_span = root_tracer.start_span(
|
||||
span_operation_name,
|
||||
metadata={
|
||||
"prompt": str_prompt,
|
||||
"params": span_params,
|
||||
"is_async_func": self.support_async(),
|
||||
"llm_adapter": str(self.llm_adapter),
|
||||
"generate_stream_func": generate_stream_func_str_name,
|
||||
"model_context": model_context,
|
||||
},
|
||||
)
|
||||
|
||||
return params, model_context, generate_stream_func, model_span
|
||||
|
||||
def _handle_output(self, output, previous_response, model_context):
|
||||
if isinstance(output, dict):
|
||||
|
@ -8,12 +8,13 @@ import sys
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from dataclasses import asdict
|
||||
from typing import Awaitable, Callable, Dict, Iterator, List, Optional
|
||||
from typing import Awaitable, Callable, Dict, Iterator, List
|
||||
|
||||
from fastapi import APIRouter, FastAPI
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
from pilot.component import SystemApp
|
||||
from pilot.configs.model_config import LOGDIR
|
||||
from pilot.model.base import (
|
||||
ModelInstance,
|
||||
ModelOutput,
|
||||
@ -35,8 +36,10 @@ from pilot.utils.parameter_utils import (
|
||||
EnvArgumentParser,
|
||||
ParameterDescription,
|
||||
_dict_to_command_args,
|
||||
_get_dict_from_obj,
|
||||
)
|
||||
from pilot.utils.utils import setup_logging
|
||||
from pilot.utils.tracer import initialize_tracer, root_tracer, SpanType, SpanTypeRunName
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -293,60 +296,72 @@ class LocalWorkerManager(WorkerManager):
|
||||
self, params: Dict, async_wrapper=None, **kwargs
|
||||
) -> Iterator[ModelOutput]:
|
||||
"""Generate stream result, chat scene"""
|
||||
try:
|
||||
worker_run_data = await self._get_model(params)
|
||||
except Exception as e:
|
||||
yield ModelOutput(
|
||||
text=f"**LLMServer Generate Error, Please CheckErrorInfo.**: {e}",
|
||||
error_code=0,
|
||||
)
|
||||
return
|
||||
async with worker_run_data.semaphore:
|
||||
if worker_run_data.worker.support_async():
|
||||
async for outout in worker_run_data.worker.async_generate_stream(
|
||||
params
|
||||
):
|
||||
yield outout
|
||||
else:
|
||||
if not async_wrapper:
|
||||
from starlette.concurrency import iterate_in_threadpool
|
||||
with root_tracer.start_span(
|
||||
"WorkerManager.generate_stream", params.get("span_id")
|
||||
) as span:
|
||||
params["span_id"] = span.span_id
|
||||
try:
|
||||
worker_run_data = await self._get_model(params)
|
||||
except Exception as e:
|
||||
yield ModelOutput(
|
||||
text=f"**LLMServer Generate Error, Please CheckErrorInfo.**: {e}",
|
||||
error_code=0,
|
||||
)
|
||||
return
|
||||
async with worker_run_data.semaphore:
|
||||
if worker_run_data.worker.support_async():
|
||||
async for outout in worker_run_data.worker.async_generate_stream(
|
||||
params
|
||||
):
|
||||
yield outout
|
||||
else:
|
||||
if not async_wrapper:
|
||||
from starlette.concurrency import iterate_in_threadpool
|
||||
|
||||
async_wrapper = iterate_in_threadpool
|
||||
async for output in async_wrapper(
|
||||
worker_run_data.worker.generate_stream(params)
|
||||
):
|
||||
yield output
|
||||
async_wrapper = iterate_in_threadpool
|
||||
async for output in async_wrapper(
|
||||
worker_run_data.worker.generate_stream(params)
|
||||
):
|
||||
yield output
|
||||
|
||||
async def generate(self, params: Dict) -> ModelOutput:
|
||||
"""Generate non stream result"""
|
||||
try:
|
||||
worker_run_data = await self._get_model(params)
|
||||
except Exception as e:
|
||||
return ModelOutput(
|
||||
text=f"**LLMServer Generate Error, Please CheckErrorInfo.**: {e}",
|
||||
error_code=0,
|
||||
)
|
||||
async with worker_run_data.semaphore:
|
||||
if worker_run_data.worker.support_async():
|
||||
return await worker_run_data.worker.async_generate(params)
|
||||
else:
|
||||
return await self.run_blocking_func(
|
||||
worker_run_data.worker.generate, params
|
||||
with root_tracer.start_span(
|
||||
"WorkerManager.generate", params.get("span_id")
|
||||
) as span:
|
||||
params["span_id"] = span.span_id
|
||||
try:
|
||||
worker_run_data = await self._get_model(params)
|
||||
except Exception as e:
|
||||
return ModelOutput(
|
||||
text=f"**LLMServer Generate Error, Please CheckErrorInfo.**: {e}",
|
||||
error_code=0,
|
||||
)
|
||||
async with worker_run_data.semaphore:
|
||||
if worker_run_data.worker.support_async():
|
||||
return await worker_run_data.worker.async_generate(params)
|
||||
else:
|
||||
return await self.run_blocking_func(
|
||||
worker_run_data.worker.generate, params
|
||||
)
|
||||
|
||||
async def embeddings(self, params: Dict) -> List[List[float]]:
|
||||
"""Embed input"""
|
||||
try:
|
||||
worker_run_data = await self._get_model(params, worker_type="text2vec")
|
||||
except Exception as e:
|
||||
raise e
|
||||
async with worker_run_data.semaphore:
|
||||
if worker_run_data.worker.support_async():
|
||||
return await worker_run_data.worker.async_embeddings(params)
|
||||
else:
|
||||
return await self.run_blocking_func(
|
||||
worker_run_data.worker.embeddings, params
|
||||
)
|
||||
with root_tracer.start_span(
|
||||
"WorkerManager.embeddings", params.get("span_id")
|
||||
) as span:
|
||||
params["span_id"] = span.span_id
|
||||
try:
|
||||
worker_run_data = await self._get_model(params, worker_type="text2vec")
|
||||
except Exception as e:
|
||||
raise e
|
||||
async with worker_run_data.semaphore:
|
||||
if worker_run_data.worker.support_async():
|
||||
return await worker_run_data.worker.async_embeddings(params)
|
||||
else:
|
||||
return await self.run_blocking_func(
|
||||
worker_run_data.worker.embeddings, params
|
||||
)
|
||||
|
||||
def sync_embeddings(self, params: Dict) -> List[List[float]]:
|
||||
worker_run_data = self._sync_get_model(params, worker_type="text2vec")
|
||||
@ -608,6 +623,9 @@ async def generate_json_stream(params):
|
||||
@router.post("/worker/generate_stream")
|
||||
async def api_generate_stream(request: PromptRequest):
|
||||
params = request.dict(exclude_none=True)
|
||||
span_id = root_tracer.get_current_span_id()
|
||||
if "span_id" not in params and span_id:
|
||||
params["span_id"] = span_id
|
||||
generator = generate_json_stream(params)
|
||||
return StreamingResponse(generator)
|
||||
|
||||
@ -615,12 +633,18 @@ async def api_generate_stream(request: PromptRequest):
|
||||
@router.post("/worker/generate")
|
||||
async def api_generate(request: PromptRequest):
|
||||
params = request.dict(exclude_none=True)
|
||||
span_id = root_tracer.get_current_span_id()
|
||||
if "span_id" not in params and span_id:
|
||||
params["span_id"] = span_id
|
||||
return await worker_manager.generate(params)
|
||||
|
||||
|
||||
@router.post("/worker/embeddings")
|
||||
async def api_embeddings(request: EmbeddingsRequest):
|
||||
params = request.dict(exclude_none=True)
|
||||
span_id = root_tracer.get_current_span_id()
|
||||
if "span_id" not in params and span_id:
|
||||
params["span_id"] = span_id
|
||||
return await worker_manager.embeddings(params)
|
||||
|
||||
|
||||
@ -705,8 +729,15 @@ def _parse_worker_params(
|
||||
model_name: str = None, model_path: str = None, **kwargs
|
||||
) -> ModelWorkerParameters:
|
||||
worker_args = EnvArgumentParser()
|
||||
env_prefix = None
|
||||
if model_name:
|
||||
env_prefix = EnvArgumentParser.get_env_prefix(model_name)
|
||||
worker_params: ModelWorkerParameters = worker_args.parse_args_into_dataclass(
|
||||
ModelWorkerParameters, model_name=model_name, model_path=model_path, **kwargs
|
||||
ModelWorkerParameters,
|
||||
env_prefix=env_prefix,
|
||||
model_name=model_name,
|
||||
model_path=model_path,
|
||||
**kwargs,
|
||||
)
|
||||
env_prefix = EnvArgumentParser.get_env_prefix(worker_params.model_name)
|
||||
# Read parameters agein with prefix of model name.
|
||||
@ -801,10 +832,18 @@ def _build_worker(worker_params: ModelWorkerParameters):
|
||||
def _start_local_worker(
|
||||
worker_manager: WorkerManagerAdapter, worker_params: ModelWorkerParameters
|
||||
):
|
||||
worker = _build_worker(worker_params)
|
||||
if not worker_manager.worker_manager:
|
||||
worker_manager.worker_manager = _create_local_model_manager(worker_params)
|
||||
worker_manager.worker_manager.add_worker(worker, worker_params)
|
||||
with root_tracer.start_span(
|
||||
"WorkerManager._start_local_worker",
|
||||
span_type=SpanType.RUN,
|
||||
metadata={
|
||||
"run_service": SpanTypeRunName.WORKER_MANAGER,
|
||||
"params": _get_dict_from_obj(worker_params),
|
||||
},
|
||||
):
|
||||
worker = _build_worker(worker_params)
|
||||
if not worker_manager.worker_manager:
|
||||
worker_manager.worker_manager = _create_local_model_manager(worker_params)
|
||||
worker_manager.worker_manager.add_worker(worker, worker_params)
|
||||
|
||||
|
||||
def _start_local_embedding_worker(
|
||||
@ -928,17 +967,17 @@ def run_worker_manager(
|
||||
# Run worker manager independently
|
||||
embedded_mod = False
|
||||
app = _setup_fastapi(worker_params)
|
||||
_start_local_worker(worker_manager, worker_params)
|
||||
_start_local_embedding_worker(
|
||||
worker_manager, embedding_model_name, embedding_model_path
|
||||
)
|
||||
else:
|
||||
_start_local_worker(worker_manager, worker_params)
|
||||
_start_local_embedding_worker(
|
||||
worker_manager, embedding_model_name, embedding_model_path
|
||||
)
|
||||
loop = asyncio.get_event_loop()
|
||||
loop.run_until_complete(worker_manager.start())
|
||||
|
||||
system_app = SystemApp(app)
|
||||
initialize_tracer(
|
||||
system_app,
|
||||
os.path.join(LOGDIR, "dbgpt_model_worker_manager_tracer.jsonl"),
|
||||
root_operation_name="DB-GPT-WorkerManager-Entry",
|
||||
)
|
||||
_start_local_worker(worker_manager, worker_params)
|
||||
_start_local_embedding_worker(
|
||||
worker_manager, embedding_model_name, embedding_model_path
|
||||
)
|
||||
|
||||
if include_router:
|
||||
app.include_router(router, prefix="/api")
|
||||
@ -946,6 +985,8 @@ def run_worker_manager(
|
||||
if not embedded_mod:
|
||||
import uvicorn
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
loop.run_until_complete(worker_manager.start())
|
||||
uvicorn.run(
|
||||
app, host=worker_params.host, port=worker_params.port, log_level="info"
|
||||
)
|
||||
|
@ -186,6 +186,13 @@ class OldLLMModelAdaperWrapper(LLMModelAdaper):
|
||||
def get_generate_stream_function(self, model, model_path: str):
|
||||
return self._chat_adapter.get_generate_stream_func(model_path)
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "{}({}.{})".format(
|
||||
self.__class__.__name__,
|
||||
self._adapter.__class__.__module__,
|
||||
self._adapter.__class__.__name__,
|
||||
)
|
||||
|
||||
|
||||
class FastChatLLMModelAdaperWrapper(LLMModelAdaper):
|
||||
"""Wrapping fastchat adapter"""
|
||||
@ -206,6 +213,13 @@ class FastChatLLMModelAdaperWrapper(LLMModelAdaper):
|
||||
) -> "Conversation":
|
||||
return self._adapter.get_default_conv_template(model_path)
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "{}({}.{})".format(
|
||||
self.__class__.__name__,
|
||||
self._adapter.__class__.__module__,
|
||||
self._adapter.__class__.__name__,
|
||||
)
|
||||
|
||||
|
||||
def get_conv_template(name: str) -> "Conversation":
|
||||
"""Get a conversation template."""
|
||||
@ -412,6 +426,9 @@ class VLLMModelAdaperWrapper(LLMModelAdaper):
|
||||
) -> "Conversation":
|
||||
return _auto_get_conv_template(model_name, model_path)
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "{}.{}".format(self.__class__.__module__, self.__class__.__name__)
|
||||
|
||||
|
||||
# Covering the configuration of fastcaht, we will regularly feedback the code here to fastchat.
|
||||
# We also recommend that you modify it directly in the fastchat repository.
|
||||
|
@ -46,6 +46,7 @@ from pilot.summary.db_summary_client import DBSummaryClient
|
||||
|
||||
from pilot.model.cluster import BaseModelController, WorkerManager, WorkerManagerFactory
|
||||
from pilot.model.base import FlatSupportedModel
|
||||
from pilot.utils.tracer import root_tracer, SpanType
|
||||
|
||||
router = APIRouter()
|
||||
CFG = Config()
|
||||
@ -366,7 +367,10 @@ async def chat_completions(dialogue: ConversationVo = Body()):
|
||||
print(
|
||||
f"chat_completions:{dialogue.chat_mode},{dialogue.select_param},{dialogue.model_name}"
|
||||
)
|
||||
chat: BaseChat = get_chat_instance(dialogue)
|
||||
with root_tracer.start_span(
|
||||
"get_chat_instance", span_type=SpanType.CHAT, metadata=dialogue.dict()
|
||||
):
|
||||
chat: BaseChat = get_chat_instance(dialogue)
|
||||
# background_tasks = BackgroundTasks()
|
||||
# background_tasks.add_task(release_model_semaphore)
|
||||
headers = {
|
||||
@ -417,9 +421,10 @@ async def model_supports(worker_manager: WorkerManager = Depends(get_worker_mana
|
||||
|
||||
|
||||
async def no_stream_generator(chat):
|
||||
msg = await chat.nostream_call()
|
||||
msg = msg.replace("\n", "\\n")
|
||||
yield f"data: {msg}\n\n"
|
||||
with root_tracer.start_span("no_stream_generator"):
|
||||
msg = await chat.nostream_call()
|
||||
msg = msg.replace("\n", "\\n")
|
||||
yield f"data: {msg}\n\n"
|
||||
|
||||
|
||||
async def stream_generator(chat, incremental: bool, model_name: str):
|
||||
@ -436,6 +441,7 @@ async def stream_generator(chat, incremental: bool, model_name: str):
|
||||
Yields:
|
||||
_type_: streaming responses
|
||||
"""
|
||||
span = root_tracer.start_span("stream_generator")
|
||||
msg = "[LLM_ERROR]: llm server has no output, maybe your prompt template is wrong."
|
||||
|
||||
stream_id = f"chatcmpl-{str(uuid.uuid1())}"
|
||||
@ -464,6 +470,7 @@ async def stream_generator(chat, incremental: bool, model_name: str):
|
||||
await asyncio.sleep(0.02)
|
||||
if incremental:
|
||||
yield "data: [DONE]\n\n"
|
||||
span.end()
|
||||
chat.current_message.add_ai_message(msg)
|
||||
chat.current_message.add_view_message(msg)
|
||||
chat.memory.append(chat.current_message)
|
||||
|
@ -15,6 +15,7 @@ from pilot.prompts.prompt_new import PromptTemplate
|
||||
from pilot.scene.base_message import ModelMessage, ModelMessageRoleType
|
||||
from pilot.scene.message import OnceConversation
|
||||
from pilot.utils import get_or_create_event_loop
|
||||
from pilot.utils.tracer import root_tracer
|
||||
from pydantic import Extra
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -135,6 +136,14 @@ class BaseChat(ABC):
|
||||
}
|
||||
return payload
|
||||
|
||||
def _get_span_metadata(self, payload: Dict) -> Dict:
|
||||
metadata = {k: v for k, v in payload.items()}
|
||||
del metadata["prompt"]
|
||||
metadata["messages"] = list(
|
||||
map(lambda m: m if isinstance(m, dict) else m.dict(), metadata["messages"])
|
||||
)
|
||||
return metadata
|
||||
|
||||
async def stream_call(self):
|
||||
# TODO Retry when server connection error
|
||||
payload = self.__call_base()
|
||||
@ -142,6 +151,10 @@ class BaseChat(ABC):
|
||||
self.skip_echo_len = len(payload.get("prompt").replace("</s>", " ")) + 11
|
||||
logger.info(f"Request: \n{payload}")
|
||||
ai_response_text = ""
|
||||
span = root_tracer.start_span(
|
||||
"BaseChat.stream_call", metadata=self._get_span_metadata(payload)
|
||||
)
|
||||
payload["span_id"] = span.span_id
|
||||
try:
|
||||
from pilot.model.cluster import WorkerManagerFactory
|
||||
|
||||
@ -150,6 +163,7 @@ class BaseChat(ABC):
|
||||
).create()
|
||||
async for output in worker_manager.generate_stream(payload):
|
||||
yield output
|
||||
span.end()
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
logger.error("model response parase faild!" + str(e))
|
||||
@ -158,11 +172,16 @@ class BaseChat(ABC):
|
||||
)
|
||||
### store current conversation
|
||||
self.memory.append(self.current_message)
|
||||
span.end(metadata={"error": str(e)})
|
||||
|
||||
async def nostream_call(self):
|
||||
payload = self.__call_base()
|
||||
logger.info(f"Request: \n{payload}")
|
||||
ai_response_text = ""
|
||||
span = root_tracer.start_span(
|
||||
"BaseChat.nostream_call", metadata=self._get_span_metadata(payload)
|
||||
)
|
||||
payload["span_id"] = span.span_id
|
||||
try:
|
||||
from pilot.model.cluster import WorkerManagerFactory
|
||||
|
||||
@ -170,7 +189,8 @@ class BaseChat(ABC):
|
||||
ComponentType.WORKER_MANAGER_FACTORY, WorkerManagerFactory
|
||||
).create()
|
||||
|
||||
model_output = await worker_manager.generate(payload)
|
||||
with root_tracer.start_span("BaseChat.invoke_worker_manager.generate"):
|
||||
model_output = await worker_manager.generate(payload)
|
||||
|
||||
### output parse
|
||||
ai_response_text = (
|
||||
@ -185,8 +205,14 @@ class BaseChat(ABC):
|
||||
ai_response_text
|
||||
)
|
||||
)
|
||||
### run
|
||||
result = self.do_action(prompt_define_response)
|
||||
metadata = {
|
||||
"model_output": model_output.to_dict(),
|
||||
"ai_response_text": ai_response_text,
|
||||
"prompt_define_response": prompt_define_response,
|
||||
}
|
||||
with root_tracer.start_span("BaseChat.do_action", metadata=metadata):
|
||||
### run
|
||||
result = self.do_action(prompt_define_response)
|
||||
|
||||
### llm speaker
|
||||
speak_to_user = self.get_llm_speak(prompt_define_response)
|
||||
@ -195,12 +221,14 @@ class BaseChat(ABC):
|
||||
speak_to_user, result
|
||||
)
|
||||
self.current_message.add_view_message(view_message)
|
||||
span.end()
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
logger.error("model response parase faild!" + str(e))
|
||||
self.current_message.add_view_message(
|
||||
f"""<span style=\"color:red\">ERROR!</span>{str(e)}\n {ai_response_text} """
|
||||
)
|
||||
span.end(metadata={"error": str(e)})
|
||||
### store dialogue
|
||||
self.memory.append(self.current_message)
|
||||
return self.current_ai_response()
|
||||
|
@ -119,6 +119,14 @@ except ImportError as e:
|
||||
logging.warning(f"Integrating dbgpt knowledge command line tool failed: {e}")
|
||||
|
||||
|
||||
try:
|
||||
from pilot.utils.tracer.tracer_cli import trace_cli_group
|
||||
|
||||
add_command_alias(trace_cli_group, name="trace", parent_group=cli)
|
||||
except ImportError as e:
|
||||
logging.warning(f"Integrating dbgpt trace command line tool failed: {e}")
|
||||
|
||||
|
||||
def main():
|
||||
return cli()
|
||||
|
||||
|
@ -2,6 +2,7 @@ from __future__ import annotations
|
||||
|
||||
import logging
|
||||
from typing import TYPE_CHECKING, Any, Type
|
||||
import os
|
||||
|
||||
from pilot.component import ComponentType, SystemApp
|
||||
from pilot.utils.executor_utils import DefaultExecutorFactory
|
||||
|
@ -7,7 +7,7 @@ ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__fi
|
||||
sys.path.append(ROOT_PATH)
|
||||
import signal
|
||||
from pilot.configs.config import Config
|
||||
from pilot.configs.model_config import LLM_MODEL_CONFIG, EMBEDDING_MODEL_CONFIG
|
||||
from pilot.configs.model_config import LLM_MODEL_CONFIG, EMBEDDING_MODEL_CONFIG, LOGDIR
|
||||
from pilot.component import SystemApp
|
||||
|
||||
from pilot.server.base import (
|
||||
@ -38,6 +38,8 @@ from pilot.utils.utils import (
|
||||
_get_logging_level,
|
||||
logging_str_to_uvicorn_level,
|
||||
)
|
||||
from pilot.utils.tracer import root_tracer, initialize_tracer, SpanType, SpanTypeRunName
|
||||
from pilot.utils.parameter_utils import _get_dict_from_obj
|
||||
|
||||
static_file_path = os.path.join(os.getcwd(), "server/static")
|
||||
|
||||
@ -98,17 +100,21 @@ def mount_static_files(app):
|
||||
app.add_exception_handler(RequestValidationError, validation_exception_handler)
|
||||
|
||||
|
||||
def _get_webserver_params(args: List[str] = None):
|
||||
from pilot.utils.parameter_utils import EnvArgumentParser
|
||||
|
||||
parser: argparse.ArgumentParser = EnvArgumentParser.create_argparse_option(
|
||||
WebWerverParameters
|
||||
)
|
||||
return WebWerverParameters(**vars(parser.parse_args(args=args)))
|
||||
|
||||
|
||||
def initialize_app(param: WebWerverParameters = None, args: List[str] = None):
|
||||
"""Initialize app
|
||||
If you use gunicorn as a process manager, initialize_app can be invoke in `on_starting` hook.
|
||||
"""
|
||||
if not param:
|
||||
from pilot.utils.parameter_utils import EnvArgumentParser
|
||||
|
||||
parser: argparse.ArgumentParser = EnvArgumentParser.create_argparse_option(
|
||||
WebWerverParameters
|
||||
)
|
||||
param = WebWerverParameters(**vars(parser.parse_args(args=args)))
|
||||
param = _get_webserver_params(args)
|
||||
|
||||
if not param.log_level:
|
||||
param.log_level = _get_logging_level()
|
||||
@ -127,7 +133,7 @@ def initialize_app(param: WebWerverParameters = None, args: List[str] = None):
|
||||
model_start_listener = _create_model_start_listener(system_app)
|
||||
initialize_components(param, system_app, embedding_model_name, embedding_model_path)
|
||||
|
||||
model_path = LLM_MODEL_CONFIG[CFG.LLM_MODEL]
|
||||
model_path = LLM_MODEL_CONFIG.get(CFG.LLM_MODEL)
|
||||
if not param.light:
|
||||
print("Model Unified Deployment Mode!")
|
||||
if not param.remote_embedding:
|
||||
@ -174,8 +180,20 @@ def run_uvicorn(param: WebWerverParameters):
|
||||
|
||||
|
||||
def run_webserver(param: WebWerverParameters = None):
|
||||
param = initialize_app(param)
|
||||
run_uvicorn(param)
|
||||
if not param:
|
||||
param = _get_webserver_params()
|
||||
initialize_tracer(system_app, os.path.join(LOGDIR, "dbgpt_webserver_tracer.jsonl"))
|
||||
|
||||
with root_tracer.start_span(
|
||||
"run_webserver",
|
||||
span_type=SpanType.RUN,
|
||||
metadata={
|
||||
"run_service": SpanTypeRunName.WEBSERVER,
|
||||
"params": _get_dict_from_obj(param),
|
||||
},
|
||||
):
|
||||
param = initialize_app(param)
|
||||
run_uvicorn(param)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -13,7 +13,7 @@ from pilot.model.cluster import run_worker_manager
|
||||
|
||||
CFG = Config()
|
||||
|
||||
model_path = LLM_MODEL_CONFIG[CFG.LLM_MODEL]
|
||||
model_path = LLM_MODEL_CONFIG.get(CFG.LLM_MODEL)
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_worker_manager(
|
||||
|
@ -1,6 +1,6 @@
|
||||
import argparse
|
||||
import os
|
||||
from dataclasses import dataclass, fields, MISSING, asdict, field
|
||||
from dataclasses import dataclass, fields, MISSING, asdict, field, is_dataclass
|
||||
from typing import Any, List, Optional, Type, Union, Callable, Dict
|
||||
from collections import OrderedDict
|
||||
|
||||
@ -590,6 +590,20 @@ def _extract_parameter_details(
|
||||
return descriptions
|
||||
|
||||
|
||||
def _get_dict_from_obj(obj, default_value=None) -> Optional[Dict]:
|
||||
if not obj:
|
||||
return None
|
||||
if is_dataclass(type(obj)):
|
||||
params = {}
|
||||
for field_info in fields(obj):
|
||||
value = _get_simple_privacy_field_value(obj, field_info)
|
||||
params[field_info.name] = value
|
||||
return params
|
||||
if isinstance(obj, dict):
|
||||
return obj
|
||||
return default_value
|
||||
|
||||
|
||||
class _SimpleArgParser:
|
||||
def __init__(self, *args):
|
||||
self.params = {arg.replace("_", "-"): None for arg in args}
|
||||
|
32
pilot/utils/tracer/__init__.py
Normal file
32
pilot/utils/tracer/__init__.py
Normal file
@ -0,0 +1,32 @@
|
||||
from pilot.utils.tracer.base import (
|
||||
SpanType,
|
||||
Span,
|
||||
SpanTypeRunName,
|
||||
Tracer,
|
||||
SpanStorage,
|
||||
SpanStorageType,
|
||||
TracerContext,
|
||||
)
|
||||
from pilot.utils.tracer.span_storage import MemorySpanStorage, FileSpanStorage
|
||||
from pilot.utils.tracer.tracer_impl import (
|
||||
root_tracer,
|
||||
initialize_tracer,
|
||||
DefaultTracer,
|
||||
TracerManager,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"SpanType",
|
||||
"Span",
|
||||
"SpanTypeRunName",
|
||||
"Tracer",
|
||||
"SpanStorage",
|
||||
"SpanStorageType",
|
||||
"TracerContext",
|
||||
"MemorySpanStorage",
|
||||
"FileSpanStorage",
|
||||
"root_tracer",
|
||||
"initialize_tracer",
|
||||
"DefaultTracer",
|
||||
"TracerManager",
|
||||
]
|
184
pilot/utils/tracer/base.py
Normal file
184
pilot/utils/tracer/base.py
Normal file
@ -0,0 +1,184 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Dict, Callable, Optional
|
||||
from dataclasses import dataclass
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
|
||||
from pilot.component import BaseComponent, SystemApp, ComponentType
|
||||
|
||||
|
||||
class SpanType(str, Enum):
|
||||
BASE = "base"
|
||||
RUN = "run"
|
||||
CHAT = "chat"
|
||||
|
||||
|
||||
class SpanTypeRunName(str, Enum):
|
||||
WEBSERVER = "Webserver"
|
||||
WORKER_MANAGER = "WorkerManager"
|
||||
MODEL_WORKER = "ModelWorker"
|
||||
EMBEDDING_MODEL = "EmbeddingModel"
|
||||
|
||||
@staticmethod
|
||||
def values():
|
||||
return [item.value for item in SpanTypeRunName]
|
||||
|
||||
|
||||
class Span:
|
||||
"""Represents a unit of work that is being traced.
|
||||
This can be any operation like a function call or a database query.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
trace_id: str,
|
||||
span_id: str,
|
||||
span_type: SpanType = None,
|
||||
parent_span_id: str = None,
|
||||
operation_name: str = None,
|
||||
metadata: Dict = None,
|
||||
end_caller: Callable[[Span], None] = None,
|
||||
):
|
||||
if not span_type:
|
||||
span_type = SpanType.BASE
|
||||
self.span_type = span_type
|
||||
# The unique identifier for the entire trace
|
||||
self.trace_id = trace_id
|
||||
# Unique identifier for this span within the trace
|
||||
self.span_id = span_id
|
||||
# Identifier of the parent span, if this is a child span
|
||||
self.parent_span_id = parent_span_id
|
||||
# Descriptive name for the operation being traced
|
||||
self.operation_name = operation_name
|
||||
# Timestamp when this span started
|
||||
self.start_time = datetime.now()
|
||||
# Timestamp when this span ended, initially None
|
||||
self.end_time = None
|
||||
# Additional metadata associated with the span
|
||||
self.metadata = metadata
|
||||
self._end_callers = []
|
||||
if end_caller:
|
||||
self._end_callers.append(end_caller)
|
||||
|
||||
def end(self, **kwargs):
|
||||
"""Mark the end of this span by recording the current time."""
|
||||
self.end_time = datetime.now()
|
||||
if "metadata" in kwargs:
|
||||
self.metadata = kwargs.get("metadata")
|
||||
for caller in self._end_callers:
|
||||
caller(self)
|
||||
|
||||
def add_end_caller(self, end_caller: Callable[[Span], None]):
|
||||
if end_caller:
|
||||
self._end_callers.append(end_caller)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.end()
|
||||
return False
|
||||
|
||||
def to_dict(self) -> Dict:
|
||||
return {
|
||||
"span_type": self.span_type.value,
|
||||
"trace_id": self.trace_id,
|
||||
"span_id": self.span_id,
|
||||
"parent_span_id": self.parent_span_id,
|
||||
"operation_name": self.operation_name,
|
||||
"start_time": None
|
||||
if not self.start_time
|
||||
else self.start_time.strftime("%Y-%m-%d %H:%M:%S.%f")[:-3],
|
||||
"end_time": None
|
||||
if not self.end_time
|
||||
else self.end_time.strftime("%Y-%m-%d %H:%M:%S.%f")[:-3],
|
||||
"metadata": self.metadata,
|
||||
}
|
||||
|
||||
|
||||
class SpanStorageType(str, Enum):
|
||||
ON_CREATE = "on_create"
|
||||
ON_END = "on_end"
|
||||
ON_CREATE_END = "on_create_end"
|
||||
|
||||
|
||||
class SpanStorage(BaseComponent, ABC):
|
||||
"""Abstract base class for storing spans.
|
||||
|
||||
This allows different storage mechanisms (e.g., in-memory, database) to be implemented.
|
||||
"""
|
||||
|
||||
name = ComponentType.TRACER_SPAN_STORAGE.value
|
||||
|
||||
def init_app(self, system_app: SystemApp):
|
||||
"""Initialize the storage with the given application context."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def append_span(self, span: Span):
|
||||
"""Store the given span. This needs to be implemented by subclasses."""
|
||||
|
||||
|
||||
class Tracer(BaseComponent, ABC):
|
||||
"""Abstract base class for tracing operations.
|
||||
Provides the core logic for starting, ending, and retrieving spans.
|
||||
"""
|
||||
|
||||
name = ComponentType.TRACER.value
|
||||
|
||||
def __init__(self, system_app: SystemApp | None = None):
|
||||
super().__init__(system_app)
|
||||
self.system_app = system_app # Application context
|
||||
|
||||
def init_app(self, system_app: SystemApp):
|
||||
"""Initialize the tracer with the given application context."""
|
||||
self.system_app = system_app
|
||||
|
||||
@abstractmethod
|
||||
def append_span(self, span: Span):
|
||||
"""Append the given span to storage. This needs to be implemented by subclasses."""
|
||||
|
||||
@abstractmethod
|
||||
def start_span(
|
||||
self,
|
||||
operation_name: str,
|
||||
parent_span_id: str = None,
|
||||
span_type: SpanType = None,
|
||||
metadata: Dict = None,
|
||||
) -> Span:
|
||||
"""Begin a new span for the given operation. If provided, the span will be
|
||||
a child of the span with the given parent_span_id.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def end_span(self, span: Span, **kwargs):
|
||||
"""
|
||||
End the given span.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def get_current_span(self) -> Optional[Span]:
|
||||
"""
|
||||
Retrieve the span that is currently being traced.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def _get_current_storage(self) -> SpanStorage:
|
||||
"""
|
||||
Get the storage mechanism currently in use for storing spans.
|
||||
This needs to be implemented by subclasses.
|
||||
"""
|
||||
|
||||
def _new_uuid(self) -> str:
|
||||
"""
|
||||
Generate a new unique identifier.
|
||||
"""
|
||||
return str(uuid.uuid4())
|
||||
|
||||
|
||||
@dataclass
|
||||
class TracerContext:
|
||||
span_id: Optional[str] = None
|
79
pilot/utils/tracer/span_storage.py
Normal file
79
pilot/utils/tracer/span_storage.py
Normal file
@ -0,0 +1,79 @@
|
||||
import os
|
||||
import json
|
||||
import time
|
||||
import threading
|
||||
import queue
|
||||
import logging
|
||||
|
||||
from pilot.component import SystemApp
|
||||
from pilot.utils.tracer.base import Span, SpanStorage
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MemorySpanStorage(SpanStorage):
|
||||
def __init__(self, system_app: SystemApp | None = None):
|
||||
super().__init__(system_app)
|
||||
self.spans = []
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def append_span(self, span: Span):
|
||||
with self._lock:
|
||||
self.spans.append(span)
|
||||
|
||||
|
||||
class FileSpanStorage(SpanStorage):
|
||||
def __init__(self, filename: str, batch_size=10, flush_interval=10):
|
||||
super().__init__()
|
||||
self.filename = filename
|
||||
self.queue = queue.Queue()
|
||||
self.batch_size = batch_size
|
||||
self.flush_interval = flush_interval
|
||||
self.last_flush_time = time.time()
|
||||
self.flush_signal_queue = queue.Queue()
|
||||
|
||||
if not os.path.exists(filename):
|
||||
with open(filename, "w") as _:
|
||||
pass
|
||||
self.flush_thread = threading.Thread(target=self._flush_to_file, daemon=True)
|
||||
self.flush_thread.start()
|
||||
|
||||
def append_span(self, span: Span):
|
||||
span_data = span.to_dict()
|
||||
logger.debug(f"append span: {span_data}")
|
||||
self.queue.put(span_data)
|
||||
|
||||
if self.queue.qsize() >= self.batch_size:
|
||||
try:
|
||||
self.flush_signal_queue.put_nowait(True)
|
||||
except queue.Full:
|
||||
pass # If the signal queue is full, it's okay. The flush thread will handle it.
|
||||
|
||||
def _write_to_file(self):
|
||||
spans_to_write = []
|
||||
while not self.queue.empty():
|
||||
spans_to_write.append(self.queue.get())
|
||||
|
||||
with open(self.filename, "a") as file:
|
||||
for span_data in spans_to_write:
|
||||
try:
|
||||
file.write(json.dumps(span_data, ensure_ascii=False) + "\n")
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Write span to file failed: {str(e)}, span_data: {span_data}"
|
||||
)
|
||||
|
||||
def _flush_to_file(self):
|
||||
while True:
|
||||
interval = time.time() - self.last_flush_time
|
||||
if interval < self.flush_interval:
|
||||
try:
|
||||
self.flush_signal_queue.get(
|
||||
block=True, timeout=self.flush_interval - interval
|
||||
)
|
||||
except Exception:
|
||||
# Timeout
|
||||
pass
|
||||
self._write_to_file()
|
||||
self.last_flush_time = time.time()
|
0
pilot/utils/tracer/tests/__init__.py
Normal file
0
pilot/utils/tracer/tests/__init__.py
Normal file
122
pilot/utils/tracer/tests/test_base.py
Normal file
122
pilot/utils/tracer/tests/test_base.py
Normal file
@ -0,0 +1,122 @@
|
||||
from typing import Dict
|
||||
from pilot.component import SystemApp
|
||||
|
||||
from pilot.utils.tracer import Span, SpanStorage, Tracer
|
||||
|
||||
|
||||
# Mock implementations
|
||||
|
||||
|
||||
class MockSpanStorage(SpanStorage):
|
||||
def __init__(self):
|
||||
self.spans = []
|
||||
|
||||
def append_span(self, span: Span):
|
||||
self.spans.append(span)
|
||||
|
||||
|
||||
class MockTracer(Tracer):
|
||||
def __init__(self, system_app: SystemApp | None = None):
|
||||
super().__init__(system_app)
|
||||
self.current_span = None
|
||||
self.storage = MockSpanStorage()
|
||||
|
||||
def append_span(self, span: Span):
|
||||
self.storage.append_span(span)
|
||||
|
||||
def start_span(
|
||||
self, operation_name: str, parent_span_id: str = None, metadata: Dict = None
|
||||
) -> Span:
|
||||
trace_id = (
|
||||
self._new_uuid() if parent_span_id is None else parent_span_id.split(":")[0]
|
||||
)
|
||||
span_id = f"{trace_id}:{self._new_uuid()}"
|
||||
span = Span(trace_id, span_id, parent_span_id, operation_name, metadata)
|
||||
self.current_span = span
|
||||
return span
|
||||
|
||||
def end_span(self, span: Span):
|
||||
span.end()
|
||||
self.append_span(span)
|
||||
|
||||
def get_current_span(self) -> Span:
|
||||
return self.current_span
|
||||
|
||||
def _get_current_storage(self) -> SpanStorage:
|
||||
return self.storage
|
||||
|
||||
|
||||
# Tests
|
||||
|
||||
|
||||
def test_span_creation():
|
||||
span = Span("trace_id", "span_id", "parent_span_id", "operation", {"key": "value"})
|
||||
assert span.trace_id == "trace_id"
|
||||
assert span.span_id == "span_id"
|
||||
assert span.parent_span_id == "parent_span_id"
|
||||
assert span.operation_name == "operation"
|
||||
assert span.metadata == {"key": "value"}
|
||||
|
||||
|
||||
def test_span_end():
|
||||
span = Span("trace_id", "span_id")
|
||||
assert span.end_time is None
|
||||
span.end()
|
||||
assert span.end_time is not None
|
||||
|
||||
|
||||
def test_mock_tracer_start_span():
|
||||
tracer = MockTracer()
|
||||
span = tracer.start_span("operation")
|
||||
assert span.operation_name == "operation"
|
||||
assert tracer.get_current_span() == span
|
||||
|
||||
|
||||
def test_mock_tracer_end_span():
|
||||
tracer = MockTracer()
|
||||
span = tracer.start_span("operation")
|
||||
tracer.end_span(span)
|
||||
assert span in tracer._get_current_storage().spans
|
||||
|
||||
|
||||
def test_mock_tracer_append_span():
|
||||
tracer = MockTracer()
|
||||
span = Span("trace_id", "span_id")
|
||||
tracer.append_span(span)
|
||||
assert span in tracer._get_current_storage().spans
|
||||
|
||||
|
||||
def test_parent_child_span_relation():
|
||||
tracer = MockTracer()
|
||||
|
||||
# Start a parent span
|
||||
parent_span = tracer.start_span("parent_operation")
|
||||
|
||||
# Start a child span with parent span's ID
|
||||
child_span = tracer.start_span(
|
||||
"child_operation", parent_span_id=parent_span.span_id
|
||||
)
|
||||
|
||||
# Assert the relationships
|
||||
assert child_span.parent_span_id == parent_span.span_id
|
||||
assert (
|
||||
child_span.trace_id == parent_span.trace_id
|
||||
) # Assuming children share the same trace ID
|
||||
|
||||
# End spans
|
||||
tracer.end_span(child_span)
|
||||
tracer.end_span(parent_span)
|
||||
|
||||
# Assert they are in the storage
|
||||
assert child_span in tracer._get_current_storage().spans
|
||||
assert parent_span in tracer._get_current_storage().spans
|
||||
|
||||
|
||||
# This test checks if unique UUIDs are being generated.
|
||||
# Note: This is a simple test and doesn't guarantee uniqueness for large numbers of UUIDs.
|
||||
|
||||
|
||||
def test_new_uuid_unique():
|
||||
tracer = MockTracer()
|
||||
uuid_set = {tracer._new_uuid() for _ in range(1000)}
|
||||
assert len(uuid_set) == 1000
|
124
pilot/utils/tracer/tests/test_span_storage.py
Normal file
124
pilot/utils/tracer/tests/test_span_storage.py
Normal file
@ -0,0 +1,124 @@
|
||||
import os
|
||||
import pytest
|
||||
import asyncio
|
||||
import json
|
||||
import tempfile
|
||||
import time
|
||||
|
||||
from pilot.utils.tracer import SpanStorage, FileSpanStorage, Span
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def storage(request):
|
||||
if not request or not hasattr(request, "param"):
|
||||
batch_size = 10
|
||||
flush_interval = 10
|
||||
file_does_not_exist = False
|
||||
else:
|
||||
batch_size = request.param.get("batch_size", 10)
|
||||
flush_interval = request.param.get("flush_interval", 10)
|
||||
file_does_not_exist = request.param.get("file_does_not_exist", False)
|
||||
|
||||
if file_does_not_exist:
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
filename = os.path.join(tmp_dir, "non_existent_file.jsonl")
|
||||
storage_instance = FileSpanStorage(
|
||||
filename, batch_size=batch_size, flush_interval=flush_interval
|
||||
)
|
||||
yield storage_instance
|
||||
else:
|
||||
with tempfile.NamedTemporaryFile(delete=True) as tmp_file:
|
||||
filename = tmp_file.name
|
||||
storage_instance = FileSpanStorage(
|
||||
filename, batch_size=batch_size, flush_interval=flush_interval
|
||||
)
|
||||
yield storage_instance
|
||||
|
||||
|
||||
def read_spans_from_file(filename):
|
||||
with open(filename, "r") as f:
|
||||
return [json.loads(line) for line in f.readlines()]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"storage", [{"batch_size": 1, "flush_interval": 5}], indirect=True
|
||||
)
|
||||
def test_write_span(storage: SpanStorage):
|
||||
span = Span("1", "a", "b", "op1")
|
||||
storage.append_span(span)
|
||||
time.sleep(0.1)
|
||||
|
||||
spans_in_file = read_spans_from_file(storage.filename)
|
||||
assert len(spans_in_file) == 1
|
||||
assert spans_in_file[0]["trace_id"] == "1"
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"storage", [{"batch_size": 1, "flush_interval": 5}], indirect=True
|
||||
)
|
||||
def test_incremental_write(storage: SpanStorage):
|
||||
span1 = Span("1", "a", "b", "op1")
|
||||
span2 = Span("2", "c", "d", "op2")
|
||||
|
||||
storage.append_span(span1)
|
||||
storage.append_span(span2)
|
||||
time.sleep(0.1)
|
||||
|
||||
spans_in_file = read_spans_from_file(storage.filename)
|
||||
assert len(spans_in_file) == 2
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"storage", [{"batch_size": 2, "flush_interval": 5}], indirect=True
|
||||
)
|
||||
def test_sync_and_async_append(storage: SpanStorage):
|
||||
span = Span("1", "a", "b", "op1")
|
||||
|
||||
storage.append_span(span)
|
||||
|
||||
async def async_append():
|
||||
storage.append_span(span)
|
||||
|
||||
asyncio.run(async_append())
|
||||
|
||||
time.sleep(0.1)
|
||||
spans_in_file = read_spans_from_file(storage.filename)
|
||||
assert len(spans_in_file) == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_flush_policy(storage: SpanStorage):
|
||||
span = Span("1", "a", "b", "op1")
|
||||
|
||||
for _ in range(storage.batch_size - 1):
|
||||
storage.append_span(span)
|
||||
|
||||
spans_in_file = read_spans_from_file(storage.filename)
|
||||
assert len(spans_in_file) == 0
|
||||
|
||||
# Trigger batch write
|
||||
storage.append_span(span)
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
spans_in_file = read_spans_from_file(storage.filename)
|
||||
assert len(spans_in_file) == storage.batch_size
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"storage", [{"batch_size": 2, "file_does_not_exist": True}], indirect=True
|
||||
)
|
||||
def test_non_existent_file(storage: SpanStorage):
|
||||
span = Span("1", "a", "b", "op1")
|
||||
span2 = Span("2", "c", "d", "op2")
|
||||
storage.append_span(span)
|
||||
time.sleep(0.1)
|
||||
|
||||
spans_in_file = read_spans_from_file(storage.filename)
|
||||
assert len(spans_in_file) == 0
|
||||
|
||||
storage.append_span(span2)
|
||||
time.sleep(0.1)
|
||||
spans_in_file = read_spans_from_file(storage.filename)
|
||||
assert len(spans_in_file) == 2
|
||||
assert spans_in_file[0]["trace_id"] == "1"
|
||||
assert spans_in_file[1]["trace_id"] == "2"
|
103
pilot/utils/tracer/tests/test_tracer_impl.py
Normal file
103
pilot/utils/tracer/tests/test_tracer_impl.py
Normal file
@ -0,0 +1,103 @@
|
||||
import pytest
|
||||
from pilot.utils.tracer import (
|
||||
Span,
|
||||
SpanStorageType,
|
||||
SpanStorage,
|
||||
DefaultTracer,
|
||||
TracerManager,
|
||||
Tracer,
|
||||
MemorySpanStorage,
|
||||
)
|
||||
from pilot.component import SystemApp
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def system_app():
|
||||
return SystemApp()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def storage(system_app: SystemApp):
|
||||
ms = MemorySpanStorage(system_app)
|
||||
system_app.register_instance(ms)
|
||||
return ms
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def tracer(request, system_app: SystemApp):
|
||||
if not request or not hasattr(request, "param"):
|
||||
return DefaultTracer(system_app)
|
||||
else:
|
||||
span_storage_type = request.param.get(
|
||||
"span_storage_type", SpanStorageType.ON_CREATE_END
|
||||
)
|
||||
return DefaultTracer(system_app, span_storage_type=span_storage_type)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def tracer_manager(system_app: SystemApp, tracer: Tracer):
|
||||
system_app.register_instance(tracer)
|
||||
manager = TracerManager()
|
||||
manager.initialize(system_app)
|
||||
return manager
|
||||
|
||||
|
||||
def test_start_and_end_span(tracer: Tracer):
|
||||
span = tracer.start_span("operation")
|
||||
assert isinstance(span, Span)
|
||||
assert span.operation_name == "operation"
|
||||
|
||||
tracer.end_span(span)
|
||||
assert span.end_time is not None
|
||||
|
||||
stored_span = tracer._get_current_storage().spans[0]
|
||||
assert stored_span == span
|
||||
|
||||
|
||||
def test_start_and_end_span_with_tracer_manager(tracer_manager: TracerManager):
|
||||
span = tracer_manager.start_span("operation")
|
||||
assert isinstance(span, Span)
|
||||
assert span.operation_name == "operation"
|
||||
|
||||
tracer_manager.end_span(span)
|
||||
assert span.end_time is not None
|
||||
|
||||
|
||||
def test_parent_child_span_relation(tracer: Tracer):
|
||||
parent_span = tracer.start_span("parent_operation")
|
||||
child_span = tracer.start_span(
|
||||
"child_operation", parent_span_id=parent_span.span_id
|
||||
)
|
||||
|
||||
assert child_span.parent_span_id == parent_span.span_id
|
||||
assert child_span.trace_id == parent_span.trace_id
|
||||
|
||||
tracer.end_span(child_span)
|
||||
tracer.end_span(parent_span)
|
||||
|
||||
assert parent_span in tracer._get_current_storage().spans
|
||||
assert child_span in tracer._get_current_storage().spans
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"tracer, expected_count, after_create_inc_count",
|
||||
[
|
||||
({"span_storage_type": SpanStorageType.ON_CREATE}, 1, 1),
|
||||
({"span_storage_type": SpanStorageType.ON_END}, 1, 0),
|
||||
({"span_storage_type": SpanStorageType.ON_CREATE_END}, 2, 1),
|
||||
],
|
||||
indirect=["tracer"],
|
||||
)
|
||||
def test_tracer_span_storage_type_and_with(
|
||||
tracer: Tracer,
|
||||
expected_count: int,
|
||||
after_create_inc_count: int,
|
||||
storage: SpanStorage,
|
||||
):
|
||||
span = tracer.start_span("new_span")
|
||||
span.end()
|
||||
assert len(storage.spans) == expected_count
|
||||
|
||||
with tracer.start_span("with_span") as ws:
|
||||
assert len(storage.spans) == expected_count + after_create_inc_count
|
||||
assert len(storage.spans) == expected_count + expected_count
|
572
pilot/utils/tracer/tracer_cli.py
Normal file
572
pilot/utils/tracer/tracer_cli.py
Normal file
@ -0,0 +1,572 @@
|
||||
import os
|
||||
import click
|
||||
import logging
|
||||
import glob
|
||||
import json
|
||||
from datetime import datetime
|
||||
from typing import Iterable, Dict, Callable
|
||||
from pilot.configs.model_config import LOGDIR
|
||||
from pilot.utils.tracer import SpanType, SpanTypeRunName
|
||||
|
||||
logger = logging.getLogger("dbgpt_cli")
|
||||
|
||||
|
||||
_DEFAULT_FILE_PATTERN = os.path.join(LOGDIR, "dbgpt*.jsonl")
|
||||
|
||||
|
||||
@click.group("trace")
|
||||
def trace_cli_group():
|
||||
"""Analyze and visualize trace spans."""
|
||||
pass
|
||||
|
||||
|
||||
@trace_cli_group.command()
|
||||
@click.option(
|
||||
"--trace_id",
|
||||
required=False,
|
||||
type=str,
|
||||
default=None,
|
||||
show_default=True,
|
||||
help="Specify the trace ID to list",
|
||||
)
|
||||
@click.option(
|
||||
"--span_id",
|
||||
required=False,
|
||||
type=str,
|
||||
default=None,
|
||||
show_default=True,
|
||||
help="Specify the Span ID to list.",
|
||||
)
|
||||
@click.option(
|
||||
"--span_type",
|
||||
required=False,
|
||||
type=str,
|
||||
default=None,
|
||||
show_default=True,
|
||||
help="Specify the Span Type to list.",
|
||||
)
|
||||
@click.option(
|
||||
"--parent_span_id",
|
||||
required=False,
|
||||
type=str,
|
||||
default=None,
|
||||
show_default=True,
|
||||
help="Specify the Parent Span ID to list.",
|
||||
)
|
||||
@click.option(
|
||||
"--search",
|
||||
required=False,
|
||||
type=str,
|
||||
default=None,
|
||||
show_default=True,
|
||||
help="Search trace_id, span_id, parent_span_id, operation_name or content in metadata.",
|
||||
)
|
||||
@click.option(
|
||||
"-l",
|
||||
"--limit",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Limit the number of recent span displayed.",
|
||||
)
|
||||
@click.option(
|
||||
"--start_time",
|
||||
type=str,
|
||||
help='Filter by start time. Format: "YYYY-MM-DD HH:MM:SS.mmm"',
|
||||
)
|
||||
@click.option(
|
||||
"--end_time", type=str, help='Filter by end time. Format: "YYYY-MM-DD HH:MM:SS.mmm"'
|
||||
)
|
||||
@click.option(
|
||||
"--desc",
|
||||
required=False,
|
||||
type=bool,
|
||||
default=False,
|
||||
is_flag=True,
|
||||
help="Whether to use reverse sorting. By default, sorting is based on start time.",
|
||||
)
|
||||
@click.option(
|
||||
"--output",
|
||||
required=False,
|
||||
type=click.Choice(["text", "html", "csv", "latex", "json"]),
|
||||
default="text",
|
||||
help="The output format",
|
||||
)
|
||||
@click.argument("files", nargs=-1, type=click.Path(exists=True, readable=True))
|
||||
def list(
|
||||
trace_id: str,
|
||||
span_id: str,
|
||||
span_type: str,
|
||||
parent_span_id: str,
|
||||
search: str,
|
||||
limit: int,
|
||||
start_time: str,
|
||||
end_time: str,
|
||||
desc: bool,
|
||||
output: str,
|
||||
files=None,
|
||||
):
|
||||
"""List your trace spans"""
|
||||
from prettytable import PrettyTable
|
||||
|
||||
# If no files are explicitly specified, use the default pattern to get them
|
||||
spans = read_spans_from_files(files)
|
||||
|
||||
if trace_id:
|
||||
spans = filter(lambda s: s["trace_id"] == trace_id, spans)
|
||||
if span_id:
|
||||
spans = filter(lambda s: s["span_id"] == span_id, spans)
|
||||
if span_type:
|
||||
spans = filter(lambda s: s["span_type"] == span_type, spans)
|
||||
if parent_span_id:
|
||||
spans = filter(lambda s: s["parent_span_id"] == parent_span_id, spans)
|
||||
# Filter spans based on the start and end times
|
||||
if start_time:
|
||||
start_dt = _parse_datetime(start_time)
|
||||
spans = filter(
|
||||
lambda span: _parse_datetime(span["start_time"]) >= start_dt, spans
|
||||
)
|
||||
|
||||
if end_time:
|
||||
end_dt = _parse_datetime(end_time)
|
||||
spans = filter(
|
||||
lambda span: _parse_datetime(span["start_time"]) <= end_dt, spans
|
||||
)
|
||||
|
||||
if search:
|
||||
spans = filter(_new_search_span_func(search), spans)
|
||||
|
||||
# Sort spans based on the start time
|
||||
spans = sorted(
|
||||
spans, key=lambda span: _parse_datetime(span["start_time"]), reverse=desc
|
||||
)[:limit]
|
||||
|
||||
table = PrettyTable(
|
||||
["Trace ID", "Span ID", "Operation Name", "Conversation UID"],
|
||||
)
|
||||
|
||||
for sp in spans:
|
||||
conv_uid = None
|
||||
if "metadata" in sp and sp:
|
||||
metadata = sp["metadata"]
|
||||
if isinstance(metadata, dict):
|
||||
conv_uid = metadata.get("conv_uid")
|
||||
table.add_row(
|
||||
[
|
||||
sp.get("trace_id"),
|
||||
sp.get("span_id"),
|
||||
# sp.get("parent_span_id"),
|
||||
sp.get("operation_name"),
|
||||
conv_uid,
|
||||
]
|
||||
)
|
||||
out_kwargs = {"ensure_ascii": False} if output == "json" else {}
|
||||
print(table.get_formatted_string(out_format=output, **out_kwargs))
|
||||
|
||||
|
||||
@trace_cli_group.command()
|
||||
@click.option(
|
||||
"--trace_id",
|
||||
required=True,
|
||||
type=str,
|
||||
help="Specify the trace ID to list",
|
||||
)
|
||||
@click.argument("files", nargs=-1, type=click.Path(exists=True, readable=True))
|
||||
def tree(trace_id: str, files):
|
||||
"""Display trace links as a tree"""
|
||||
hierarchy = _view_trace_hierarchy(trace_id, files)
|
||||
if not hierarchy:
|
||||
_print_empty_message(files)
|
||||
return
|
||||
_print_trace_hierarchy(hierarchy)
|
||||
|
||||
|
||||
@trace_cli_group.command()
|
||||
@click.option(
|
||||
"--trace_id",
|
||||
required=False,
|
||||
type=str,
|
||||
default=None,
|
||||
help="Specify the trace ID to analyze. If None, show latest conversation details",
|
||||
)
|
||||
@click.option(
|
||||
"--tree",
|
||||
required=False,
|
||||
type=bool,
|
||||
default=False,
|
||||
is_flag=True,
|
||||
help="Display trace spans as a tree",
|
||||
)
|
||||
@click.option(
|
||||
"--hide_conv",
|
||||
required=False,
|
||||
type=bool,
|
||||
default=False,
|
||||
is_flag=True,
|
||||
help="Hide your conversation details",
|
||||
)
|
||||
@click.option(
|
||||
"--hide_run_params",
|
||||
required=False,
|
||||
type=bool,
|
||||
default=False,
|
||||
is_flag=True,
|
||||
help="Hide run params",
|
||||
)
|
||||
@click.option(
|
||||
"--output",
|
||||
required=False,
|
||||
type=click.Choice(["text", "html", "csv", "latex", "json"]),
|
||||
default="text",
|
||||
help="The output format",
|
||||
)
|
||||
@click.argument("files", nargs=-1, type=click.Path(exists=False, readable=True))
|
||||
def chat(
|
||||
trace_id: str,
|
||||
tree: bool,
|
||||
hide_conv: bool,
|
||||
hide_run_params: bool,
|
||||
output: str,
|
||||
files,
|
||||
):
|
||||
"""Show conversation details"""
|
||||
from prettytable import PrettyTable
|
||||
|
||||
spans = read_spans_from_files(files)
|
||||
|
||||
# Sort by start time
|
||||
spans = sorted(
|
||||
spans, key=lambda span: _parse_datetime(span["start_time"]), reverse=True
|
||||
)
|
||||
spans = [sp for sp in spans]
|
||||
if not spans:
|
||||
_print_empty_message(files)
|
||||
return
|
||||
service_spans = {}
|
||||
service_names = set(SpanTypeRunName.values())
|
||||
found_trace_id = None
|
||||
for sp in spans:
|
||||
span_type = sp["span_type"]
|
||||
metadata = sp.get("metadata")
|
||||
if span_type == SpanType.RUN:
|
||||
service_name = metadata["run_service"]
|
||||
service_spans[service_name] = sp.copy()
|
||||
if set(service_spans.keys()) == service_names and found_trace_id:
|
||||
break
|
||||
elif span_type == SpanType.CHAT and not found_trace_id:
|
||||
if not trace_id:
|
||||
found_trace_id = sp["trace_id"]
|
||||
if trace_id and trace_id == sp["trace_id"]:
|
||||
found_trace_id = trace_id
|
||||
|
||||
service_tables = {}
|
||||
out_kwargs = {"ensure_ascii": False} if output == "json" else {}
|
||||
for service_name, sp in service_spans.items():
|
||||
metadata = sp["metadata"]
|
||||
table = PrettyTable(["Config Key", "Config Value"], title=service_name)
|
||||
for k, v in metadata["params"].items():
|
||||
table.add_row([k, v])
|
||||
service_tables[service_name] = table
|
||||
|
||||
if not hide_run_params:
|
||||
merged_table1 = merge_tables_horizontally(
|
||||
[
|
||||
service_tables.get(SpanTypeRunName.WEBSERVER.value),
|
||||
service_tables.get(SpanTypeRunName.EMBEDDING_MODEL.value),
|
||||
]
|
||||
)
|
||||
merged_table2 = merge_tables_horizontally(
|
||||
[
|
||||
service_tables.get(SpanTypeRunName.MODEL_WORKER),
|
||||
service_tables.get(SpanTypeRunName.WORKER_MANAGER),
|
||||
]
|
||||
)
|
||||
if output == "text":
|
||||
print(merged_table1)
|
||||
print(merged_table2)
|
||||
else:
|
||||
for service_name, table in service_tables.items():
|
||||
print(table.get_formatted_string(out_format=output, **out_kwargs))
|
||||
if hide_conv:
|
||||
return
|
||||
|
||||
if not found_trace_id:
|
||||
print(f"Can't found conversation with trace_id: {trace_id}")
|
||||
return
|
||||
trace_id = found_trace_id
|
||||
|
||||
trace_spans = [span for span in spans if span["trace_id"] == trace_id]
|
||||
trace_spans = [s for s in reversed(trace_spans)]
|
||||
hierarchy = _build_trace_hierarchy(trace_spans)
|
||||
if tree:
|
||||
print("\nInvoke Trace Tree:\n")
|
||||
_print_trace_hierarchy(hierarchy)
|
||||
|
||||
trace_spans = _get_ordered_trace_from(hierarchy)
|
||||
table = PrettyTable(["Key", "Value Value"], title="Chat Trace Details")
|
||||
split_long_text = output == "text"
|
||||
|
||||
for sp in trace_spans:
|
||||
op = sp["operation_name"]
|
||||
metadata = sp.get("metadata")
|
||||
if op == "get_chat_instance" and not sp["end_time"]:
|
||||
table.add_row(["trace_id", trace_id])
|
||||
table.add_row(["span_id", sp["span_id"]])
|
||||
table.add_row(["conv_uid", metadata.get("conv_uid")])
|
||||
table.add_row(["user_input", metadata.get("user_input")])
|
||||
table.add_row(["chat_mode", metadata.get("chat_mode")])
|
||||
table.add_row(["select_param", metadata.get("select_param")])
|
||||
table.add_row(["model_name", metadata.get("model_name")])
|
||||
if op in ["BaseChat.stream_call", "BaseChat.nostream_call"]:
|
||||
if not sp["end_time"]:
|
||||
table.add_row(["temperature", metadata.get("temperature")])
|
||||
table.add_row(["max_new_tokens", metadata.get("max_new_tokens")])
|
||||
table.add_row(["echo", metadata.get("echo")])
|
||||
elif "error" in metadata:
|
||||
table.add_row(["BaseChat Error", metadata.get("error")])
|
||||
if op == "BaseChat.nostream_call" and not sp["end_time"]:
|
||||
if "model_output" in metadata:
|
||||
table.add_row(
|
||||
[
|
||||
"BaseChat model_output",
|
||||
split_string_by_terminal_width(
|
||||
metadata.get("model_output").get("text"),
|
||||
split=split_long_text,
|
||||
),
|
||||
]
|
||||
)
|
||||
if "ai_response_text" in metadata:
|
||||
table.add_row(
|
||||
[
|
||||
"BaseChat ai_response_text",
|
||||
split_string_by_terminal_width(
|
||||
metadata.get("ai_response_text"), split=split_long_text
|
||||
),
|
||||
]
|
||||
)
|
||||
if "prompt_define_response" in metadata:
|
||||
table.add_row(
|
||||
[
|
||||
"BaseChat prompt_define_response",
|
||||
split_string_by_terminal_width(
|
||||
metadata.get("prompt_define_response"),
|
||||
split=split_long_text,
|
||||
),
|
||||
]
|
||||
)
|
||||
if op == "DefaultModelWorker_call.generate_stream_func":
|
||||
if not sp["end_time"]:
|
||||
table.add_row(["llm_adapter", metadata.get("llm_adapter")])
|
||||
table.add_row(
|
||||
[
|
||||
"User prompt",
|
||||
split_string_by_terminal_width(
|
||||
metadata.get("prompt"), split=split_long_text
|
||||
),
|
||||
]
|
||||
)
|
||||
else:
|
||||
table.add_row(
|
||||
[
|
||||
"Model output",
|
||||
split_string_by_terminal_width(metadata.get("output")),
|
||||
]
|
||||
)
|
||||
if (
|
||||
op
|
||||
in [
|
||||
"DefaultModelWorker.async_generate_stream",
|
||||
"DefaultModelWorker.generate_stream",
|
||||
]
|
||||
and metadata
|
||||
and "error" in metadata
|
||||
):
|
||||
table.add_row(["Model Error", metadata.get("error")])
|
||||
print(table.get_formatted_string(out_format=output, **out_kwargs))
|
||||
|
||||
|
||||
def read_spans_from_files(files=None) -> Iterable[Dict]:
|
||||
"""
|
||||
Reads spans from multiple files based on the provided file paths.
|
||||
"""
|
||||
if not files:
|
||||
files = [_DEFAULT_FILE_PATTERN]
|
||||
|
||||
for filepath in files:
|
||||
for filename in glob.glob(filepath):
|
||||
with open(filename, "r") as file:
|
||||
for line in file:
|
||||
yield json.loads(line)
|
||||
|
||||
|
||||
def _print_empty_message(files=None):
|
||||
if not files:
|
||||
files = [_DEFAULT_FILE_PATTERN]
|
||||
file_names = ",".join(files)
|
||||
print(f"No trace span records found in your tracer files: {file_names}")
|
||||
|
||||
|
||||
def _new_search_span_func(search: str):
|
||||
def func(span: Dict) -> bool:
|
||||
items = [span["trace_id"], span["span_id"], span["parent_span_id"]]
|
||||
if "operation_name" in span:
|
||||
items.append(span["operation_name"])
|
||||
if "metadata" in span:
|
||||
metadata = span["metadata"]
|
||||
if isinstance(metadata, dict):
|
||||
for k, v in metadata.items():
|
||||
items.append(k)
|
||||
items.append(v)
|
||||
return any(search in str(item) for item in items if item)
|
||||
|
||||
return func
|
||||
|
||||
|
||||
def _parse_datetime(dt_str):
|
||||
"""Parse a datetime string to a datetime object."""
|
||||
return datetime.strptime(dt_str, "%Y-%m-%d %H:%M:%S.%f")
|
||||
|
||||
|
||||
def _build_trace_hierarchy(spans, parent_span_id=None, indent=0):
|
||||
# Current spans
|
||||
current_level_spans = [
|
||||
span
|
||||
for span in spans
|
||||
if span["parent_span_id"] == parent_span_id and span["end_time"] is None
|
||||
]
|
||||
|
||||
hierarchy = []
|
||||
|
||||
for start_span in current_level_spans:
|
||||
# Find end span
|
||||
end_span = next(
|
||||
(
|
||||
span
|
||||
for span in spans
|
||||
if span["span_id"] == start_span["span_id"]
|
||||
and span["end_time"] is not None
|
||||
),
|
||||
None,
|
||||
)
|
||||
entry = {
|
||||
"operation_name": start_span["operation_name"],
|
||||
"parent_span_id": start_span["parent_span_id"],
|
||||
"span_id": start_span["span_id"],
|
||||
"start_time": start_span["start_time"],
|
||||
"end_time": start_span["end_time"],
|
||||
"metadata": start_span["metadata"],
|
||||
"children": _build_trace_hierarchy(
|
||||
spans, start_span["span_id"], indent + 1
|
||||
),
|
||||
}
|
||||
hierarchy.append(entry)
|
||||
|
||||
# Append end span
|
||||
if end_span:
|
||||
entry_end = {
|
||||
"operation_name": end_span["operation_name"],
|
||||
"parent_span_id": end_span["parent_span_id"],
|
||||
"span_id": end_span["span_id"],
|
||||
"start_time": end_span["start_time"],
|
||||
"end_time": end_span["end_time"],
|
||||
"metadata": end_span["metadata"],
|
||||
"children": [],
|
||||
}
|
||||
hierarchy.append(entry_end)
|
||||
|
||||
return hierarchy
|
||||
|
||||
|
||||
def _view_trace_hierarchy(trace_id, files=None):
|
||||
"""Find and display the calls of the entire link based on the given trace_id"""
|
||||
spans = read_spans_from_files(files)
|
||||
trace_spans = [span for span in spans if span["trace_id"] == trace_id]
|
||||
if not trace_spans:
|
||||
return None
|
||||
hierarchy = _build_trace_hierarchy(trace_spans)
|
||||
return hierarchy
|
||||
|
||||
|
||||
def _print_trace_hierarchy(hierarchy, indent=0):
|
||||
"""Print link hierarchy"""
|
||||
for entry in hierarchy:
|
||||
print(
|
||||
" " * indent
|
||||
+ f"Operation: {entry['operation_name']} (Start: {entry['start_time']}, End: {entry['end_time']})"
|
||||
)
|
||||
_print_trace_hierarchy(entry["children"], indent + 1)
|
||||
|
||||
|
||||
def _get_ordered_trace_from(hierarchy):
|
||||
traces = []
|
||||
|
||||
def func(items):
|
||||
for item in items:
|
||||
traces.append(item)
|
||||
func(item["children"])
|
||||
|
||||
func(hierarchy)
|
||||
return traces
|
||||
|
||||
|
||||
def _print(service_spans: Dict):
|
||||
for names in [
|
||||
[SpanTypeRunName.WEBSERVER.name, SpanTypeRunName.EMBEDDING_MODEL],
|
||||
[SpanTypeRunName.WORKER_MANAGER.name, SpanTypeRunName.MODEL_WORKER],
|
||||
]:
|
||||
pass
|
||||
|
||||
|
||||
def merge_tables_horizontally(tables):
|
||||
from prettytable import PrettyTable
|
||||
|
||||
if not tables:
|
||||
return None
|
||||
|
||||
tables = [t for t in tables if t]
|
||||
if not tables:
|
||||
return None
|
||||
|
||||
max_rows = max(len(table._rows) for table in tables)
|
||||
|
||||
merged_table = PrettyTable()
|
||||
|
||||
new_field_names = []
|
||||
for table in tables:
|
||||
new_field_names.extend(
|
||||
[
|
||||
f"{name} ({table.title})" if table.title else f"{name}"
|
||||
for name in table.field_names
|
||||
]
|
||||
)
|
||||
|
||||
merged_table.field_names = new_field_names
|
||||
|
||||
for i in range(max_rows):
|
||||
merged_row = []
|
||||
for table in tables:
|
||||
if i < len(table._rows):
|
||||
merged_row.extend(table._rows[i])
|
||||
else:
|
||||
# Fill empty cells for shorter tables
|
||||
merged_row.extend([""] * len(table.field_names))
|
||||
merged_table.add_row(merged_row)
|
||||
|
||||
return merged_table
|
||||
|
||||
|
||||
def split_string_by_terminal_width(s, split=True, max_len=None, sp="\n"):
|
||||
"""
|
||||
Split a string into substrings based on the current terminal width.
|
||||
|
||||
Parameters:
|
||||
- s: the input string
|
||||
"""
|
||||
if not split:
|
||||
return s
|
||||
if not max_len:
|
||||
try:
|
||||
max_len = int(os.get_terminal_size().columns * 0.8)
|
||||
except OSError:
|
||||
# Default to 80 columns if the terminal size can't be determined
|
||||
max_len = 100
|
||||
return sp.join([s[i : i + max_len] for i in range(0, len(s), max_len)])
|
195
pilot/utils/tracer/tracer_impl.py
Normal file
195
pilot/utils/tracer/tracer_impl.py
Normal file
@ -0,0 +1,195 @@
|
||||
from typing import Dict, Optional
|
||||
from contextvars import ContextVar
|
||||
from functools import wraps
|
||||
|
||||
from pilot.component import SystemApp, ComponentType
|
||||
from pilot.utils.tracer.base import (
|
||||
SpanType,
|
||||
Span,
|
||||
Tracer,
|
||||
SpanStorage,
|
||||
SpanStorageType,
|
||||
TracerContext,
|
||||
)
|
||||
from pilot.utils.tracer.span_storage import MemorySpanStorage
|
||||
|
||||
|
||||
class DefaultTracer(Tracer):
|
||||
def __init__(
|
||||
self,
|
||||
system_app: SystemApp | None = None,
|
||||
default_storage: SpanStorage = None,
|
||||
span_storage_type: SpanStorageType = SpanStorageType.ON_CREATE_END,
|
||||
):
|
||||
super().__init__(system_app)
|
||||
self._span_stack_var = ContextVar("span_stack", default=[])
|
||||
|
||||
if not default_storage:
|
||||
default_storage = MemorySpanStorage(system_app)
|
||||
self._default_storage = default_storage
|
||||
self._span_storage_type = span_storage_type
|
||||
|
||||
def append_span(self, span: Span):
|
||||
self._get_current_storage().append_span(span)
|
||||
|
||||
def start_span(
|
||||
self,
|
||||
operation_name: str,
|
||||
parent_span_id: str = None,
|
||||
span_type: SpanType = None,
|
||||
metadata: Dict = None,
|
||||
) -> Span:
|
||||
trace_id = (
|
||||
self._new_uuid() if parent_span_id is None else parent_span_id.split(":")[0]
|
||||
)
|
||||
span_id = f"{trace_id}:{self._new_uuid()}"
|
||||
span = Span(
|
||||
trace_id,
|
||||
span_id,
|
||||
span_type,
|
||||
parent_span_id,
|
||||
operation_name,
|
||||
metadata=metadata,
|
||||
)
|
||||
|
||||
if self._span_storage_type in [
|
||||
SpanStorageType.ON_END,
|
||||
SpanStorageType.ON_CREATE_END,
|
||||
]:
|
||||
span.add_end_caller(self.append_span)
|
||||
|
||||
if self._span_storage_type in [
|
||||
SpanStorageType.ON_CREATE,
|
||||
SpanStorageType.ON_CREATE_END,
|
||||
]:
|
||||
self.append_span(span)
|
||||
current_stack = self._span_stack_var.get()
|
||||
current_stack.append(span)
|
||||
self._span_stack_var.set(current_stack)
|
||||
|
||||
span.add_end_caller(self._remove_from_stack_top)
|
||||
return span
|
||||
|
||||
def end_span(self, span: Span, **kwargs):
|
||||
""""""
|
||||
span.end(**kwargs)
|
||||
|
||||
def _remove_from_stack_top(self, span: Span):
|
||||
current_stack = self._span_stack_var.get()
|
||||
if current_stack:
|
||||
current_stack.pop()
|
||||
self._span_stack_var.set(current_stack)
|
||||
|
||||
def get_current_span(self) -> Optional[Span]:
|
||||
current_stack = self._span_stack_var.get()
|
||||
return current_stack[-1] if current_stack else None
|
||||
|
||||
def _get_current_storage(self) -> SpanStorage:
|
||||
return self.system_app.get_component(
|
||||
ComponentType.TRACER_SPAN_STORAGE, SpanStorage, self._default_storage
|
||||
)
|
||||
|
||||
|
||||
class TracerManager:
|
||||
"""The manager of current tracer"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self._system_app: Optional[SystemApp] = None
|
||||
self._trace_context_var: ContextVar[TracerContext] = ContextVar(
|
||||
"trace_context",
|
||||
default=TracerContext(),
|
||||
)
|
||||
|
||||
def initialize(
|
||||
self, system_app: SystemApp, trace_context_var: ContextVar[TracerContext] = None
|
||||
) -> None:
|
||||
self._system_app = system_app
|
||||
if trace_context_var:
|
||||
self._trace_context_var = trace_context_var
|
||||
|
||||
def _get_tracer(self) -> Tracer:
|
||||
if not self._system_app:
|
||||
return None
|
||||
return self._system_app.get_component(ComponentType.TRACER, Tracer, None)
|
||||
|
||||
def start_span(
|
||||
self,
|
||||
operation_name: str,
|
||||
parent_span_id: str = None,
|
||||
span_type: SpanType = None,
|
||||
metadata: Dict = None,
|
||||
) -> Span:
|
||||
"""Start a new span with operation_name
|
||||
This method must not throw an exception under any case and try not to block as much as possible
|
||||
"""
|
||||
tracer = self._get_tracer()
|
||||
if not tracer:
|
||||
return Span("empty_span", "empty_span")
|
||||
if not parent_span_id:
|
||||
parent_span_id = self.get_current_span_id()
|
||||
return tracer.start_span(
|
||||
operation_name, parent_span_id, span_type=span_type, metadata=metadata
|
||||
)
|
||||
|
||||
def end_span(self, span: Span, **kwargs):
|
||||
tracer = self._get_tracer()
|
||||
if not tracer or not span:
|
||||
return
|
||||
tracer.end_span(span, **kwargs)
|
||||
|
||||
def get_current_span(self) -> Optional[Span]:
|
||||
tracer = self._get_tracer()
|
||||
if not tracer:
|
||||
return None
|
||||
return tracer.get_current_span()
|
||||
|
||||
def get_current_span_id(self) -> Optional[str]:
|
||||
current_span = self.get_current_span()
|
||||
if current_span:
|
||||
return current_span.span_id
|
||||
ctx = self._trace_context_var.get()
|
||||
return ctx.span_id if ctx else None
|
||||
|
||||
|
||||
root_tracer: TracerManager = TracerManager()
|
||||
|
||||
|
||||
def trace(operation_name: str, **trace_kwargs):
|
||||
def decorator(func):
|
||||
@wraps(func)
|
||||
async def wrapper(*args, **kwargs):
|
||||
with root_tracer.start_span(operation_name, **trace_kwargs):
|
||||
return await func(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def initialize_tracer(
|
||||
system_app: SystemApp,
|
||||
tracer_filename: str,
|
||||
root_operation_name: str = "DB-GPT-Web-Entry",
|
||||
):
|
||||
if not system_app:
|
||||
return
|
||||
from pilot.utils.tracer.span_storage import FileSpanStorage
|
||||
|
||||
trace_context_var = ContextVar(
|
||||
"trace_context",
|
||||
default=TracerContext(),
|
||||
)
|
||||
tracer = DefaultTracer(system_app)
|
||||
|
||||
system_app.register_instance(FileSpanStorage(tracer_filename))
|
||||
system_app.register_instance(tracer)
|
||||
root_tracer.initialize(system_app, trace_context_var)
|
||||
if system_app.app:
|
||||
from pilot.utils.tracer.tracer_middleware import TraceIDMiddleware
|
||||
|
||||
system_app.app.add_middleware(
|
||||
TraceIDMiddleware,
|
||||
trace_context_var=trace_context_var,
|
||||
tracer=tracer,
|
||||
root_operation_name=root_operation_name,
|
||||
)
|
45
pilot/utils/tracer/tracer_middleware.py
Normal file
45
pilot/utils/tracer/tracer_middleware.py
Normal file
@ -0,0 +1,45 @@
|
||||
import uuid
|
||||
from contextvars import ContextVar
|
||||
|
||||
from starlette.middleware.base import BaseHTTPMiddleware
|
||||
from starlette.requests import Request
|
||||
from starlette.types import ASGIApp
|
||||
from pilot.utils.tracer import TracerContext, Tracer
|
||||
|
||||
|
||||
_DEFAULT_EXCLUDE_PATHS = ["/api/controller/heartbeat"]
|
||||
|
||||
|
||||
class TraceIDMiddleware(BaseHTTPMiddleware):
|
||||
def __init__(
|
||||
self,
|
||||
app: ASGIApp,
|
||||
trace_context_var: ContextVar[TracerContext],
|
||||
tracer: Tracer,
|
||||
root_operation_name: str = "DB-GPT-Web-Entry",
|
||||
include_prefix: str = "/api",
|
||||
exclude_paths=_DEFAULT_EXCLUDE_PATHS,
|
||||
):
|
||||
super().__init__(app)
|
||||
self.trace_context_var = trace_context_var
|
||||
self.tracer = tracer
|
||||
self.root_operation_name = root_operation_name
|
||||
self.include_prefix = include_prefix
|
||||
self.exclude_paths = exclude_paths
|
||||
|
||||
async def dispatch(self, request: Request, call_next):
|
||||
if request.url.path in self.exclude_paths or not request.url.path.startswith(
|
||||
self.include_prefix
|
||||
):
|
||||
return await call_next(request)
|
||||
|
||||
span_id = request.headers.get("DBGPT_TRACER_SPAN_ID")
|
||||
# if not span_id:
|
||||
# span_id = str(uuid.uuid4())
|
||||
# self.trace_context_var.set(TracerContext(span_id=span_id))
|
||||
|
||||
with self.tracer.start_span(
|
||||
self.root_operation_name, span_id, metadata={"path": request.url.path}
|
||||
):
|
||||
response = await call_next(request)
|
||||
return response
|
Loading…
Reference in New Issue
Block a user