feat(core): More trace records for DB-GPT (#775)

- More trace record for DB-GPT
- Support pass span id to threadpool
This commit is contained in:
Aries-ckt 2023-11-04 18:15:53 +08:00 committed by GitHub
commit 1d2b054372
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 195 additions and 57 deletions

View File

@ -34,6 +34,7 @@ CREATE TABLE `knowledge_document` (
`content` LONGTEXT NOT NULL COMMENT 'knowledge embedding sync result',
`result` TEXT NULL COMMENT 'knowledge content',
`vector_ids` LONGTEXT NULL COMMENT 'vector_ids',
`summary` LONGTEXT NULL COMMENT 'knowledge summary',
`gmt_created` TIMESTAMP DEFAULT CURRENT_TIMESTAMP COMMENT 'created time',
`gmt_modified` TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT 'update time',
PRIMARY KEY (`id`),

View File

@ -13,6 +13,7 @@ from pilot.scene.base_message import ModelMessage, ModelMessageRoleType
from pilot.scene.message import OnceConversation
from pilot.utils import get_or_create_event_loop
from pilot.utils.executor_utils import ExecutorFactory, blocking_func_to_async
from pilot.utils.tracer import root_tracer, trace
from pydantic import Extra
from pilot.memory.chat_history.chat_hisotry_factory import ChatHistory
@ -38,6 +39,7 @@ class BaseChat(ABC):
arbitrary_types_allowed = True
@trace("BaseChat.__init__")
def __init__(self, chat_param: Dict):
"""Chat Module Initialization
Args:
@ -143,7 +145,14 @@ class BaseChat(ABC):
)
self.current_message.tokens = 0
if self.prompt_template.template:
current_prompt = self.prompt_template.format(**input_values)
metadata = {
"template_scene": self.prompt_template.template_scene,
"input_values": input_values,
}
with root_tracer.start_span(
"BaseChat.__call_base.prompt_template.format", metadata=metadata
):
current_prompt = self.prompt_template.format(**input_values)
self.current_message.add_system_message(current_prompt)
llm_messages = self.generate_llm_messages()
@ -175,6 +184,14 @@ class BaseChat(ABC):
except StopAsyncIteration:
return True # 迭代器已经执行结束
def _get_span_metadata(self, payload: Dict) -> Dict:
metadata = {k: v for k, v in payload.items()}
del metadata["prompt"]
metadata["messages"] = list(
map(lambda m: m if isinstance(m, dict) else m.dict(), metadata["messages"])
)
return metadata
async def stream_call(self):
# TODO Retry when server connection error
payload = await self.__call_base()
@ -182,6 +199,10 @@ class BaseChat(ABC):
self.skip_echo_len = len(payload.get("prompt").replace("</s>", " ")) + 11
logger.info(f"Requert: \n{payload}")
ai_response_text = ""
span = root_tracer.start_span(
"BaseChat.stream_call", metadata=self._get_span_metadata(payload)
)
payload["span_id"] = span.span_id
try:
from pilot.model.cluster import WorkerManagerFactory
@ -199,6 +220,7 @@ class BaseChat(ABC):
self.current_message.add_ai_message(msg)
view_msg = self.knowledge_reference_call(msg)
self.current_message.add_view_message(view_msg)
span.end()
except Exception as e:
print(traceback.format_exc())
logger.error("model response parase faild" + str(e))
@ -206,12 +228,17 @@ class BaseChat(ABC):
f"""<span style=\"color:red\">ERROR!</span>{str(e)}\n {ai_response_text} """
)
### store current conversation
span.end(metadata={"error": str(e)})
self.memory.append(self.current_message)
async def nostream_call(self):
payload = await self.__call_base()
logger.info(f"Request: \n{payload}")
ai_response_text = ""
span = root_tracer.start_span(
"BaseChat.nostream_call", metadata=self._get_span_metadata(payload)
)
payload["span_id"] = span.span_id
try:
from pilot.model.cluster import WorkerManagerFactory
@ -219,7 +246,8 @@ class BaseChat(ABC):
ComponentType.WORKER_MANAGER_FACTORY, WorkerManagerFactory
).create()
model_output = await worker_manager.generate(payload)
with root_tracer.start_span("BaseChat.invoke_worker_manager.generate"):
model_output = await worker_manager.generate(payload)
### output parse
ai_response_text = (
@ -234,11 +262,18 @@ class BaseChat(ABC):
ai_response_text
)
)
### run
# result = self.do_action(prompt_define_response)
result = await blocking_func_to_async(
self._executor, self.do_action, prompt_define_response
)
metadata = {
"model_output": model_output.to_dict(),
"ai_response_text": ai_response_text,
"prompt_define_response": self._parse_prompt_define_response(
prompt_define_response
),
}
with root_tracer.start_span("BaseChat.do_action", metadata=metadata):
### run
result = await blocking_func_to_async(
self._executor, self.do_action, prompt_define_response
)
### llm speaker
speak_to_user = self.get_llm_speak(prompt_define_response)
@ -255,12 +290,14 @@ class BaseChat(ABC):
view_message = view_message.replace("\n", "\\n")
self.current_message.add_view_message(view_message)
span.end()
except Exception as e:
print(traceback.format_exc())
logger.error("model response parase faild" + str(e))
self.current_message.add_view_message(
f"""<span style=\"color:red\">ERROR!</span>{str(e)}\n {ai_response_text} """
)
span.end(metadata={"error": str(e)})
### store dialogue
self.memory.append(self.current_message)
return self.current_ai_response()
@ -513,3 +550,21 @@ class BaseChat(ABC):
"""
pass
def _parse_prompt_define_response(self, prompt_define_response: Any) -> Any:
if not prompt_define_response:
return ""
if isinstance(prompt_define_response, str) or isinstance(
prompt_define_response, dict
):
return prompt_define_response
if isinstance(prompt_define_response, tuple):
if hasattr(prompt_define_response, "_asdict"):
# namedtuple
return prompt_define_response._asdict()
else:
return dict(
zip(range(len(prompt_define_response)), prompt_define_response)
)
else:
return prompt_define_response

View File

@ -11,6 +11,7 @@ from pilot.common.string_utils import extract_content
from .prompt import prompt
from pilot.component import ComponentType
from pilot.base_modules.agent.controller import ModuleAgent
from pilot.utils.tracer import root_tracer, trace
CFG = Config()
@ -51,6 +52,7 @@ class ChatAgent(BaseChat):
self.api_call = ApiCall(plugin_generator=self.plugins_prompt_generator)
@trace()
async def generate_input_values(self) -> Dict[str, str]:
input_values = {
"user_goal": self.current_user_input,
@ -63,7 +65,10 @@ class ChatAgent(BaseChat):
def stream_plugin_call(self, text):
text = text.replace("\n", " ")
return self.api_call.run(text)
with root_tracer.start_span(
"ChatAgent.stream_plugin_call.api_call", metadata={"text": text}
):
return self.api_call.run(text)
def __list_to_prompt_str(self, list: List) -> str:
return "\n".join(f"{i + 1 + 1}. {item}" for i, item in enumerate(list))

View File

@ -13,6 +13,7 @@ from pilot.scene.chat_dashboard.data_preparation.report_schma import (
from pilot.scene.chat_dashboard.prompt import prompt
from pilot.scene.chat_dashboard.data_loader import DashboardDataLoader
from pilot.utils.executor_utils import blocking_func_to_async
from pilot.utils.tracer import root_tracer, trace
CFG = Config()
@ -53,6 +54,7 @@ class ChatDashboard(BaseChat):
data = f.read()
return json.loads(data)
@trace()
async def generate_input_values(self) -> Dict:
try:
from pilot.summary.db_summary_client import DBSummaryClient

View File

@ -14,6 +14,7 @@ from pilot.scene.chat_data.chat_excel.excel_learning.chat import ExcelLearning
from pilot.common.path_utils import has_path
from pilot.configs.model_config import LLM_MODEL_CONFIG, KNOWLEDGE_UPLOAD_ROOT_PATH
from pilot.base_modules.agent.common.schema import Status
from pilot.utils.tracer import root_tracer, trace
CFG = Config()
@ -62,6 +63,7 @@ class ChatExcel(BaseChat):
# ]
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(command_strings))
@trace()
async def generate_input_values(self) -> Dict:
input_values = {
"user_input": self.current_user_input,
@ -88,4 +90,9 @@ class ChatExcel(BaseChat):
def stream_plugin_call(self, text):
text = text.replace("\n", " ")
return self.api_call.run_display_sql(text, self.excel_reader.get_df_by_sql_ex)
with root_tracer.start_span(
"ChatExcel.stream_plugin_call.run_display_sql", metadata={"text": text}
):
return self.api_call.run_display_sql(
text, self.excel_reader.get_df_by_sql_ex
)

View File

@ -13,6 +13,7 @@ from pilot.scene.chat_data.chat_excel.excel_learning.prompt import prompt
from pilot.scene.chat_data.chat_excel.excel_reader import ExcelReader
from pilot.json_utils.utilities import DateTimeEncoder
from pilot.utils.executor_utils import blocking_func_to_async
from pilot.utils.tracer import root_tracer, trace
CFG = Config()
@ -44,6 +45,7 @@ class ExcelLearning(BaseChat):
if parent_mode:
self.current_message.chat_mode = parent_mode.value()
@trace()
async def generate_input_values(self) -> Dict:
# colunms, datas = self.excel_reader.get_sample_data()
colunms, datas = await blocking_func_to_async(

View File

@ -6,6 +6,7 @@ from pilot.common.sql_database import Database
from pilot.configs.config import Config
from pilot.scene.chat_db.auto_execute.prompt import prompt
from pilot.utils.executor_utils import blocking_func_to_async
from pilot.utils.tracer import root_tracer, trace
CFG = Config()
@ -35,10 +36,13 @@ class ChatWithDbAutoExecute(BaseChat):
raise ValueError(
f"{ChatScene.ChatWithDbExecute.value} mode should chose db!"
)
self.database = CFG.LOCAL_DB_MANAGE.get_connect(self.db_name)
with root_tracer.start_span(
"ChatWithDbAutoExecute.get_connect", metadata={"db_name": self.db_name}
):
self.database = CFG.LOCAL_DB_MANAGE.get_connect(self.db_name)
self.top_k: int = 200
@trace()
async def generate_input_values(self) -> Dict:
"""
generate input values
@ -55,13 +59,14 @@ class ChatWithDbAutoExecute(BaseChat):
# query=self.current_user_input,
# topk=CFG.KNOWLEDGE_SEARCH_TOP_SIZE,
# )
table_infos = await blocking_func_to_async(
self._executor,
client.get_db_summary,
self.db_name,
self.current_user_input,
CFG.KNOWLEDGE_SEARCH_TOP_SIZE,
)
with root_tracer.start_span("ChatWithDbAutoExecute.get_db_summary"):
table_infos = await blocking_func_to_async(
self._executor,
client.get_db_summary,
self.db_name,
self.current_user_input,
CFG.KNOWLEDGE_SEARCH_TOP_SIZE,
)
except Exception as e:
print("db summary find error!" + str(e))
if not table_infos:
@ -80,4 +85,8 @@ class ChatWithDbAutoExecute(BaseChat):
def do_action(self, prompt_response):
print(f"do_action:{prompt_response}")
return self.database.run(prompt_response.sql)
with root_tracer.start_span(
"ChatWithDbAutoExecute.do_action.run_sql",
metadata=prompt_response.to_dict(),
):
return self.database.run(prompt_response.sql)

View File

@ -12,6 +12,9 @@ class SqlAction(NamedTuple):
sql: str
thoughts: Dict
def to_dict(self) -> Dict[str, Dict]:
return {"sql": self.sql, "thoughts": self.thoughts}
logger = logging.getLogger(__name__)

View File

@ -6,6 +6,7 @@ from pilot.common.sql_database import Database
from pilot.configs.config import Config
from pilot.scene.chat_db.professional_qa.prompt import prompt
from pilot.utils.executor_utils import blocking_func_to_async
from pilot.utils.tracer import root_tracer, trace
CFG = Config()
@ -39,6 +40,7 @@ class ChatWithDbQA(BaseChat):
else len(self.tables)
)
@trace()
async def generate_input_values(self) -> Dict:
table_info = ""
dialect = "mysql"

View File

@ -6,6 +6,7 @@ from pilot.configs.config import Config
from pilot.base_modules.agent.commands.command import execute_command
from pilot.base_modules.agent import PluginPromptGenerator
from .prompt import prompt
from pilot.utils.tracer import root_tracer, trace
CFG = Config()
@ -50,6 +51,7 @@ class ChatWithPlugin(BaseChat):
self.plugins_prompt_generator
)
@trace()
async def generate_input_values(self) -> Dict:
input_values = {
"input": self.current_user_input,

View File

@ -4,6 +4,7 @@ from pilot.scene.base import ChatScene
from pilot.configs.config import Config
from pilot.scene.chat_knowledge.inner_db_summary.prompt import prompt
from pilot.utils.tracer import root_tracer, trace
CFG = Config()
@ -31,6 +32,7 @@ class InnerChatDBSummary(BaseChat):
self.db_input = db_select
self.db_summary = db_summary
@trace()
async def generate_input_values(self) -> Dict:
input_values = {
"db_input": self.db_input,

View File

@ -15,6 +15,7 @@ from pilot.configs.model_config import (
from pilot.scene.chat_knowledge.v1.prompt import prompt
from pilot.server.knowledge.service import KnowledgeService
from pilot.utils.executor_utils import blocking_func_to_async
from pilot.utils.tracer import root_tracer, trace
CFG = Config()
@ -92,6 +93,7 @@ class ChatKnowledge(BaseChat):
"""return reference"""
return text + f"\n\n{self.parse_source_view(self.sources)}"
@trace()
async def generate_input_values(self) -> Dict:
if self.space_context:
self.prompt_template.template_define = self.space_context["prompt"]["scene"]

View File

@ -5,6 +5,7 @@ from pilot.scene.base import ChatScene
from pilot.configs.config import Config
from pilot.scene.chat_normal.prompt import prompt
from pilot.utils.tracer import root_tracer, trace
CFG = Config()
@ -21,6 +22,7 @@ class ChatNormal(BaseChat):
chat_param=chat_param,
)
@trace()
async def generate_input_values(self) -> Dict:
input_values = {"input": self.current_user_input}
return input_values

View File

@ -1,5 +1,6 @@
from typing import Callable, Awaitable, Any
import asyncio
import contextvars
from abc import ABC, abstractmethod
from concurrent.futures import Executor, ThreadPoolExecutor
from functools import partial
@ -55,6 +56,12 @@ async def blocking_func_to_async(
"""
if asyncio.iscoroutinefunction(func):
raise ValueError(f"The function {func} is not blocking function")
# This function will be called within the new thread, capturing the current context
ctx = contextvars.copy_context()
def run_with_context():
return ctx.run(partial(func, *args, **kwargs))
loop = asyncio.get_event_loop()
sync_function_noargs = partial(func, *args, **kwargs)
return await loop.run_in_executor(executor, sync_function_noargs)
return await loop.run_in_executor(executor, run_with_context)

View File

@ -10,6 +10,7 @@ from pilot.utils.tracer.base import (
from pilot.utils.tracer.span_storage import MemorySpanStorage, FileSpanStorage
from pilot.utils.tracer.tracer_impl import (
root_tracer,
trace,
initialize_tracer,
DefaultTracer,
TracerManager,
@ -26,6 +27,7 @@ __all__ = [
"MemorySpanStorage",
"FileSpanStorage",
"root_tracer",
"trace",
"initialize_tracer",
"DefaultTracer",
"TracerManager",

View File

@ -303,8 +303,6 @@ def chat(
print(table.get_formatted_string(out_format=output, **out_kwargs))
if sys_table:
print(sys_table.get_formatted_string(out_format=output, **out_kwargs))
if hide_conv:
return
if not found_trace_id:
print(f"Can't found conversation with trace_id: {trace_id}")
@ -315,9 +313,12 @@ def chat(
trace_spans = [s for s in reversed(trace_spans)]
hierarchy = _build_trace_hierarchy(trace_spans)
if tree:
print("\nInvoke Trace Tree:\n")
print(f"\nInvoke Trace Tree(trace_id: {trace_id}):\n")
_print_trace_hierarchy(hierarchy)
if hide_conv:
return
trace_spans = _get_ordered_trace_from(hierarchy)
table = PrettyTable(["Key", "Value Value"], title="Chat Trace Details")
split_long_text = output == "text"
@ -340,36 +341,43 @@ def chat(
table.add_row(["echo", metadata.get("echo")])
elif "error" in metadata:
table.add_row(["BaseChat Error", metadata.get("error")])
if op == "BaseChat.nostream_call" and not sp["end_time"]:
if "model_output" in metadata:
table.add_row(
[
"BaseChat model_output",
split_string_by_terminal_width(
metadata.get("model_output").get("text"),
split=split_long_text,
),
]
)
if "ai_response_text" in metadata:
table.add_row(
[
"BaseChat ai_response_text",
split_string_by_terminal_width(
metadata.get("ai_response_text"), split=split_long_text
),
]
)
if "prompt_define_response" in metadata:
table.add_row(
[
"BaseChat prompt_define_response",
split_string_by_terminal_width(
metadata.get("prompt_define_response"),
split=split_long_text,
),
]
if op == "BaseChat.do_action" and not sp["end_time"]:
if "model_output" in metadata:
table.add_row(
[
"BaseChat model_output",
split_string_by_terminal_width(
metadata.get("model_output").get("text"),
split=split_long_text,
),
]
)
if "ai_response_text" in metadata:
table.add_row(
[
"BaseChat ai_response_text",
split_string_by_terminal_width(
metadata.get("ai_response_text"), split=split_long_text
),
]
)
if "prompt_define_response" in metadata:
prompt_define_response = metadata.get("prompt_define_response") or ""
if isinstance(prompt_define_response, dict) or isinstance(
prompt_define_response, type([])
):
prompt_define_response = json.dumps(
prompt_define_response, ensure_ascii=False
)
table.add_row(
[
"BaseChat prompt_define_response",
split_string_by_terminal_width(
prompt_define_response,
split=split_long_text,
),
]
)
if op == "DefaultModelWorker_call.generate_stream_func":
if not sp["end_time"]:
table.add_row(["llm_adapter", metadata.get("llm_adapter")])

View File

@ -1,6 +1,9 @@
from typing import Dict, Optional
from contextvars import ContextVar
from functools import wraps
import asyncio
import inspect
from pilot.component import SystemApp, ComponentType
from pilot.utils.tracer.base import (
@ -154,18 +157,42 @@ class TracerManager:
root_tracer: TracerManager = TracerManager()
def trace(operation_name: str, **trace_kwargs):
def trace(operation_name: Optional[str] = None, **trace_kwargs):
def decorator(func):
@wraps(func)
async def wrapper(*args, **kwargs):
with root_tracer.start_span(operation_name, **trace_kwargs):
def sync_wrapper(*args, **kwargs):
name = (
operation_name if operation_name else _parse_operation_name(func, *args)
)
with root_tracer.start_span(name, **trace_kwargs):
return func(*args, **kwargs)
@wraps(func)
async def async_wrapper(*args, **kwargs):
name = (
operation_name if operation_name else _parse_operation_name(func, *args)
)
with root_tracer.start_span(name, **trace_kwargs):
return await func(*args, **kwargs)
return wrapper
if asyncio.iscoroutinefunction(func):
return async_wrapper
else:
return sync_wrapper
return decorator
def _parse_operation_name(func, *args):
self_name = None
if inspect.signature(func).parameters.get("self"):
self_name = args[0].__class__.__name__
func_name = func.__name__
if self_name:
return f"{self_name}.{func_name}"
return func_name
def initialize_tracer(
system_app: SystemApp,
tracer_filename: str,