diff --git a/pilot/out_parser/base.py b/pilot/out_parser/base.py index 72868cf4d..46a7dde8b 100644 --- a/pilot/out_parser/base.py +++ b/pilot/out_parser/base.py @@ -53,9 +53,11 @@ class BaseOutputParser(ABC): """ if data["error_code"] == 0: if "vicuna" in CFG.LLM_MODEL: - output = data["text"][skip_echo_len + 11:].strip() + # output = data["text"][skip_echo_len + 11:].strip() + output = data["text"][skip_echo_len:].strip() elif "guanaco" in CFG.LLM_MODEL: - output = data["text"][skip_echo_len + 14:].replace("", "").strip() + # output = data["text"][skip_echo_len + 14:].replace("", "").strip() + output = data["text"][skip_echo_len:].replace("", "").strip() else: output = data["text"].strip() diff --git a/pilot/scene/chat_knowledge/url/prompt.py b/pilot/scene/chat_knowledge/url/prompt.py index 96e1ee520..38d5dfe35 100644 --- a/pilot/scene/chat_knowledge/url/prompt.py +++ b/pilot/scene/chat_knowledge/url/prompt.py @@ -11,7 +11,7 @@ from pilot.scene.chat_normal.out_parser import NormalChatOutputParser CFG = Config() -PROMPT_SCENE_DEFINE = """A chat between a curious user and an artificial intelligence assistant, who very familiar with database related knowledge. +PROMPT_SCENE_DEFINE = """A chat between a curious human and an artificial intelligence assistant, who very familiar with database related knowledge. The assistant gives helpful, detailed, professional and polite answers to the user's questions. """ diff --git a/pilot/source_embedding/url_embedding.py b/pilot/source_embedding/url_embedding.py index 774f6e852..7acfaf961 100644 --- a/pilot/source_embedding/url_embedding.py +++ b/pilot/source_embedding/url_embedding.py @@ -5,9 +5,12 @@ from langchain.document_loaders import WebBaseLoader from langchain.schema import Document from langchain.text_splitter import CharacterTextSplitter +from pilot.configs.config import Config +from pilot.configs.model_config import KNOWLEDGE_CHUNK_SPLIT_SIZE from pilot.source_embedding import SourceEmbedding, register +from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter - +CFG = Config() class URLEmbedding(SourceEmbedding): """url embedding for read url document.""" @@ -22,10 +25,15 @@ class URLEmbedding(SourceEmbedding): def read(self): """Load from url path.""" loader = WebBaseLoader(web_path=self.file_path) - text_splitor = CharacterTextSplitter( - chunk_size=100, chunk_overlap=20, length_function=len - ) - return loader.load_and_split(text_splitor) + if CFG.LANGUAGE == "en": + text_splitter = CharacterTextSplitter( + chunk_size=KNOWLEDGE_CHUNK_SPLIT_SIZE, chunk_overlap=20, length_function=len + ) + else: + text_splitter = CHNDocumentSplitter( + pdf=True, sentence_size=1000 + ) + return loader.load_and_split(text_splitter) @register def data_process(self, documents: List[Document]):