feat(model): Add LL benchmarks code

This commit is contained in:
FangYin Cheng
2023-11-18 05:16:55 +08:00
parent 3d7481d369
commit 1f22459fbe
8 changed files with 650 additions and 9 deletions

View File

@@ -3,7 +3,9 @@
from enum import Enum
from typing import TypedDict, Optional, Dict, List, Any
from dataclasses import dataclass, asdict
import time
from datetime import datetime
from pilot.utils.parameter_utils import ParameterDescription
@@ -47,6 +49,79 @@ class WorkerApplyType(str, Enum):
UPDATE_PARAMS = "update_params"
@dataclass
class ModelInferenceMetrics:
"""A class to represent metrics for assessing the inference performance of a LLM."""
start_time_ms: Optional[int] = None
"""The timestamp (in milliseconds) when the model inference starts."""
end_time_ms: Optional[int] = None
"""The timestamp (in milliseconds) when the model inference ends."""
current_time_ms: Optional[int] = None
"""The current timestamp (in milliseconds) when the model inference return partially output(stream)."""
first_token_time_ms: Optional[int] = None
"""The timestamp (in milliseconds) when the first token is generated."""
first_completion_time_ms: Optional[int] = None
"""The timestamp (in milliseconds) when the first completion is generated."""
first_completion_tokens: Optional[int] = None
"""The number of tokens when the first completion is generated."""
prompt_tokens: Optional[int] = None
"""The number of tokens in the input prompt."""
completion_tokens: Optional[int] = None
"""The number of tokens in the generated completion."""
total_tokens: Optional[int] = None
"""The total number of tokens (prompt plus completion)."""
speed_per_second: Optional[float] = None
"""The average number of tokens generated per second."""
@staticmethod
def create_metrics(
last_metrics: Optional["ModelInferenceMetrics"] = None,
) -> "ModelInferenceMetrics":
start_time_ms = last_metrics.start_time_ms if last_metrics else None
first_token_time_ms = last_metrics.first_token_time_ms if last_metrics else None
first_completion_time_ms = (
last_metrics.first_completion_time_ms if last_metrics else None
)
first_completion_tokens = (
last_metrics.first_completion_tokens if last_metrics else None
)
prompt_tokens = last_metrics.prompt_tokens if last_metrics else None
completion_tokens = last_metrics.completion_tokens if last_metrics else None
total_tokens = last_metrics.total_tokens if last_metrics else None
speed_per_second = last_metrics.speed_per_second if last_metrics else None
if not start_time_ms:
start_time_ms = time.time_ns() // 1_000_000
current_time_ms = time.time_ns() // 1_000_000
end_time_ms = current_time_ms
return ModelInferenceMetrics(
start_time_ms=start_time_ms,
end_time_ms=end_time_ms,
current_time_ms=current_time_ms,
first_token_time_ms=first_token_time_ms,
first_completion_time_ms=first_completion_time_ms,
first_completion_tokens=first_completion_tokens,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
speed_per_second=speed_per_second,
)
def to_dict(self) -> Dict:
return asdict(self)
@dataclass
class ModelOutput:
text: str
@@ -54,7 +129,8 @@ class ModelOutput:
model_context: Dict = None
finish_reason: str = None
usage: Dict[str, Any] = None
metrics: Dict[str, Any] = None
metrics: Optional[ModelInferenceMetrics] = None
"""Some metrics for model inference"""
def to_dict(self) -> Dict:

View File

@@ -2,9 +2,12 @@ import os
import logging
from typing import Dict, Iterator, List, Optional
import time
import copy
from pilot.configs.model_config import get_device
from pilot.model.model_adapter import get_llm_model_adapter, LLMModelAdaper
from pilot.model.base import ModelOutput
from pilot.model.base import ModelOutput, ModelInferenceMetrics
from pilot.model.loader import ModelLoader, _get_model_real_path
from pilot.model.parameter import ModelParameters
from pilot.model.cluster.worker_base import ModelWorker
@@ -144,14 +147,29 @@ class DefaultModelWorker(ModelWorker):
)
previous_response = ""
last_metrics = ModelInferenceMetrics.create_metrics()
is_first_generate = True
context_len = params.get("context_len") or self.context_len
for output in generate_stream_func(
self.model, self.tokenizer, params, get_device(), context_len
):
model_output, incremental_output, output_str = self._handle_output(
output, previous_response, model_context
(
model_output,
incremental_output,
output_str,
current_metrics,
) = self._handle_output(
output,
previous_response,
model_context,
last_metrics,
is_first_generate,
)
if is_first_generate:
is_first_generate = False
previous_response = output_str
last_metrics = current_metrics
yield model_output
print(
f"\n\nfull stream output:\n{previous_response}\n\nmodel generate_stream params:\n{params}"
@@ -191,13 +209,28 @@ class DefaultModelWorker(ModelWorker):
previous_response = ""
context_len = params.get("context_len") or self.context_len
last_metrics = ModelInferenceMetrics.create_metrics()
is_first_generate = True
async for output in generate_stream_func(
self.model, self.tokenizer, params, get_device(), context_len
):
model_output, incremental_output, output_str = self._handle_output(
output, previous_response, model_context
(
model_output,
incremental_output,
output_str,
current_metrics,
) = self._handle_output(
output,
previous_response,
model_context,
last_metrics,
is_first_generate,
)
if is_first_generate:
is_first_generate = False
previous_response = output_str
last_metrics = current_metrics
yield model_output
print(
f"\n\nfull stream output:\n{previous_response}\n\nmodel generate_stream params:\n{params}"
@@ -262,7 +295,14 @@ class DefaultModelWorker(ModelWorker):
return params, model_context, generate_stream_func, model_span
def _handle_output(self, output, previous_response, model_context):
def _handle_output(
self,
output,
previous_response,
model_context,
last_metrics: ModelInferenceMetrics,
is_first_generate: bool,
):
finish_reason = None
usage = None
if isinstance(output, dict):
@@ -273,14 +313,17 @@ class DefaultModelWorker(ModelWorker):
logger.info(f"finish_reason: {finish_reason}")
incremental_output = output[len(previous_response) :]
print(incremental_output, end="", flush=True)
metrics = _new_metrics_from_model_output(last_metrics, is_first_generate, usage)
model_output = ModelOutput(
text=output,
error_code=0,
model_context=model_context,
finish_reason=finish_reason,
usage=usage,
metrics=metrics,
)
return model_output, incremental_output, output
return model_output, incremental_output, output, metrics
def _handle_exception(self, e):
# Check if the exception is a torch.cuda.CudaError and if torch was imported.
@@ -310,3 +353,49 @@ def _parse_model_max_length(model, tokenizer) -> Optional[int]:
return model_config.max_position_embeddings
except Exception:
return None
def _new_metrics_from_model_output(
last_metric: ModelInferenceMetrics,
is_first_generate: bool,
usage: Optional[Dict] = None,
) -> ModelInferenceMetrics:
metrics = ModelInferenceMetrics.create_metrics(last_metric)
if is_first_generate:
logger.info(f"is_first_generate, usage: {usage}")
metrics.first_completion_time_ms = time.time_ns() // 1_000_000
if not usage or not isinstance(usage, dict):
return metrics
prompt_tokens = usage.get("prompt_tokens")
completion_tokens = usage.get("completion_tokens")
total_tokens = usage.get("total_tokens")
if prompt_tokens is None:
prompt_tokens = metrics.prompt_tokens
if completion_tokens is None:
completion_tokens = metrics.completion_tokens
if total_tokens is None:
total_tokens = metrics.total_tokens
if is_first_generate and (completion_tokens is not None):
# completion_tokens == 0 is prefill
metrics.first_completion_tokens = completion_tokens
if completion_tokens == 1:
metrics.first_token_time_ms = metrics.first_completion_time_ms
if prompt_tokens:
metrics.prompt_tokens = prompt_tokens
if completion_tokens:
metrics.completion_tokens = completion_tokens
if total_tokens:
metrics.total_tokens = total_tokens
elif prompt_tokens and completion_tokens:
total_tokens = prompt_tokens + completion_tokens
metrics.total_tokens = total_tokens
if total_tokens:
# time cost(seconds)
duration = (metrics.current_time_ms - metrics.start_time_ms) / 1000.0
metrics.speed_per_second = total_tokens / duration
return metrics

View File

@@ -1000,11 +1000,16 @@ def run_worker_manager(
embedding_model_name: str = None,
embedding_model_path: str = None,
start_listener: Callable[["WorkerManager"], None] = None,
**kwargs,
):
global worker_manager
worker_params: ModelWorkerParameters = _parse_worker_params(
model_name=model_name, model_path=model_path, standalone=standalone, port=port
model_name=model_name,
model_path=model_path,
standalone=standalone,
port=port,
**kwargs,
)
setup_logging(

View File

View File

View File

@@ -0,0 +1,237 @@
from typing import Dict, List
import asyncio
import os
import sys
import time
import csv
import argparse
from pilot.configs.model_config import ROOT_PATH, LLM_MODEL_CONFIG
from pilot.model.cluster.worker.manager import (
run_worker_manager,
initialize_worker_manager_in_client,
worker_manager,
WorkerManager,
)
from pilot.model.base import ModelOutput, ModelInferenceMetrics
from pilot.model.cluster import PromptRequest
from pilot.scene.base_message import ModelMessage, ModelMessageRoleType
# model_name = "chatglm2-6b"
# model_name = "vicuna-7b-v1.5"
model_name = "baichuan2-7b"
model_path = LLM_MODEL_CONFIG[model_name]
# or vllm
model_type = "huggingface"
controller_addr = "http://127.0.0.1:5005"
result_csv_file = None
parallel_nums = [1, 2, 4, 16, 32]
# parallel_nums = [1, 2, 4]
def get_result_csv_file() -> str:
return os.path.join(
ROOT_PATH, f"pilot/data/{model_name}_{model_type}_benchmarks_llm.csv"
)
input_output_length_pair = [
[64, 256],
[64, 512],
[64, 1024],
[512, 1024],
[1024, 1024],
[1024, 2048],
[2048, 2048],
]
input_lens = [64, 64]
output_lens = [256, 512]
prompt_file_map = {
"11k": os.path.join(
ROOT_PATH, "docker/examples/benchmarks/benchmarks_llm_11k_prompt.txt"
)
}
METRICS_HEADERS = [
# Params
"model_name",
"parallel_nums",
"input_length",
"output_length",
# Merge parallel result
"test_time_cost_ms",
"test_total_tokens",
"test_speed_per_second",
# Detail for each task
"start_time_ms",
"end_time_ms",
"current_time_ms",
"first_token_time_ms",
"first_completion_time_ms",
"first_completion_tokens",
"prompt_tokens",
"completion_tokens",
"total_tokens",
"speed_per_second",
]
def read_prompt_from_file(file_key: str) -> str:
full_path = prompt_file_map[file_key]
with open(full_path, "r+", encoding="utf-8") as f:
return f.read()
def build_param(
input_len: int,
output_len: int,
user_input: str,
system_prompt: str = None,
) -> Dict:
hist = []
if system_prompt:
hist.append()(
ModelMessage(role=ModelMessageRoleType.SYSTEM, content=system_prompt)
)
hist.append(ModelMessage(role=ModelMessageRoleType.HUMAN, content=user_input))
hist = list(h.dict() for h in hist)
context_len = input_len + output_len
params = {
"prompt": user_input,
"messages": hist,
"model": model_name,
"echo": False,
"max_new_tokens": output_len,
"context_len": context_len,
}
return params
async def run_batch(
wh, input_len: int, output_len: int, parallel_num: int, output_file: str
):
tasks = []
prompt = read_prompt_from_file("11k")
for _ in range(parallel_num):
params = build_param(input_len, output_len, prompt)
tasks.append(wh.generate(params))
print(
f"Begin run benchmarks, model name: {model_name}, input_len: {input_len}, output_len: {output_len}, parallel_num: {parallel_num}, save result to {output_file}"
)
start_time_ms = time.time_ns() // 1_000_000
results: List[ModelOutput] = await asyncio.gather(*tasks)
end_time_ms = time.time_ns() // 1_000_000
test_time_cost_ms = end_time_ms - start_time_ms
test_total_tokens = 0
rows = []
for r in results:
metrics = r.metrics
if isinstance(metrics, dict):
metrics = ModelInferenceMetrics(**metrics)
test_total_tokens += metrics.total_tokens
row_data = metrics.to_dict()
rows.append(row_data)
test_speed_per_second = test_total_tokens / (test_time_cost_ms / 1000.0)
with open(output_file, "a", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=METRICS_HEADERS)
if f.tell() == 0:
# Fist time
writer.writeheader()
for row in rows:
row["model_name"] = model_name
row["parallel_nums"] = parallel_num
row["input_length"] = input_len
row["output_length"] = output_len
row["test_time_cost_ms"] = test_time_cost_ms
row["test_total_tokens"] = test_total_tokens
row["test_speed_per_second"] = test_speed_per_second
writer.writerow(row)
print(
f"input_len: {input_len}, output_len: {output_len}, parallel_num: {parallel_num}, save result to {output_file}"
)
async def run_model(wh: WorkerManager) -> None:
global result_csv_file
if not result_csv_file:
result_csv_file = get_result_csv_file()
if os.path.exists(result_csv_file):
os.rename(result_csv_file, f"{result_csv_file}.bak.csv")
for parallel_num in parallel_nums:
for input_len, output_len in zip(input_lens, output_lens):
await run_batch(wh, input_len, output_len, parallel_num, result_csv_file)
sys.exit(0)
def startup_llm_env():
from fastapi import FastAPI
app = FastAPI()
initialize_worker_manager_in_client(
app=app,
model_name=model_name,
model_path=model_path,
run_locally=False,
controller_addr=controller_addr,
local_port=6000,
start_listener=run_model,
# system_app=system_app,
)
def connect_to_remote_model():
startup_llm_env()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, default=model_name)
parser.add_argument("--model_path", type=str, default=None)
parser.add_argument("--model_type", type=str, default="huggingface")
parser.add_argument("--result_csv_file", type=str, default=None)
parser.add_argument("--input_lens", type=str, default="64,64,64,512,1024,1024,2048")
parser.add_argument(
"--output_lens", type=str, default="256,512,1024,1024,1024,2048,2048"
)
parser.add_argument("--parallel_nums", type=str, default="1,2,4,16,32")
parser.add_argument(
"--remote_model", type=bool, default=False, help="Connect to remote model"
)
parser.add_argument("--controller_addr", type=str, default="http://127.0.0.1:8000")
parser.add_argument("--limit_model_concurrency", type=int, default=200)
args = parser.parse_args()
print(f"args: {args}")
model_name = args.model_name
model_path = args.model_path or LLM_MODEL_CONFIG[model_name]
result_csv_file = args.result_csv_file
input_lens = [int(i) for i in args.input_lens.strip().split(",")]
output_lens = [int(i) for i in args.output_lens.strip().split(",")]
parallel_nums = [int(i) for i in args.parallel_nums.strip().split(",")]
remote_model = args.remote_model
controller_addr = args.controller_addr
limit_model_concurrency = args.limit_model_concurrency
model_type = args.model_type
if len(input_lens) != len(output_lens):
raise ValueError("input_lens size must equal output_lens size")
if remote_model:
connect_to_remote_model()
else:
run_worker_manager(
model_name=model_name,
model_path=model_path,
start_listener=run_model,
limit_model_concurrency=limit_model_concurrency,
model_type=model_type,
)