fix:rag workflow update

This commit is contained in:
aries_ckt 2025-03-23 16:20:40 +08:00
parent 3fa7bee289
commit 2107f472e1
20 changed files with 5807 additions and 6146 deletions

View File

@ -7,7 +7,7 @@ from typing import List, Optional
from pydantic import Field
from dbgpt.core import Chunk
from dbgpt.core import Chunk, Embeddings
from dbgpt.storage.base import IndexStoreBase, IndexStoreConfig
from dbgpt.storage.graph_store.graph import Graph
from dbgpt.util import RegisterParameters
@ -29,6 +29,11 @@ class KnowledgeGraphBase(IndexStoreBase, ABC):
def get_config(self) -> KnowledgeGraphConfig:
"""Get the knowledge graph config."""
@property
def embeddings(self) -> Embeddings:
"""Get the knowledge graph embeddings."""
raise NotImplementedError
@abstractmethod
def query_graph(self, limit: Optional[int] = None) -> Graph:
"""Get graph data."""

View File

@ -17,7 +17,7 @@ from dbgpt.util.i18n_utils import _
logger = logging.getLogger(__name__)
_COMMON_PARAMETERS = [
_VECTOR_STORE_COMMON_PARAMETERS = [
Parameter.build_from(
_("Collection Name"),
"name",
@ -28,6 +28,20 @@ _COMMON_PARAMETERS = [
optional=True,
default="dbgpt_collection",
),
Parameter.build_from(
_("Embedding Function"),
"embedding_fn",
Embeddings,
description=_(
"The embedding function of vector store, if not set, will use "
"the default embedding function."
),
optional=True,
default=None,
),
]
_COMMON_PARAMETERS = [
Parameter.build_from(
_("User"),
"user",
@ -48,40 +62,6 @@ _COMMON_PARAMETERS = [
optional=True,
default=None,
),
Parameter.build_from(
_("Embedding Function"),
"embedding_fn",
Embeddings,
description=_(
"The embedding function of vector store, if not set, will use "
"the default embedding function."
),
optional=True,
default=None,
),
Parameter.build_from(
_("Max Chunks Once Load"),
"max_chunks_once_load",
int,
description=_(
"The max number of chunks to load at once. If your document is "
"large, you can set this value to a larger number to speed up the loading "
"process. Default is 10."
),
optional=True,
default=10,
),
Parameter.build_from(
_("Max Threads"),
"max_threads",
int,
description=_(
"The max number of threads to use. Default is 1. If you set "
"this bigger than 1, please make sure your vector store is thread-safe."
),
optional=True,
default=1,
),
]

View File

@ -58,7 +58,7 @@ class KnowledgeGraphOperator(MapOperator[List[Chunk], List[Chunk]]):
"""Init the Knowledge Graph operator."""
MapOperator.__init__(self, **kwargs)
self._graph_store = graph_store
self._embeddings = graph_store.get_config().embedding_fn
self._embeddings = graph_store.embeddings
self._max_chunks_once_load = max_chunks_once_load
self.graph_store = graph_store

View File

@ -84,7 +84,7 @@ class KnowledgeProcessBranchOperator(BranchOperator[Knowledge, Knowledge]):
async def check_graph_process(r: Knowledge) -> bool:
# If check graph is true, we will run extract knowledge graph triplets.
from dbgpt.rag.operators import KnowledgeGraphOperator
from dbgpt_ext.rag.operators import KnowledgeGraphOperator
if KnowledgeGraphOperator in download_cls_list:
return True
@ -92,7 +92,7 @@ class KnowledgeProcessBranchOperator(BranchOperator[Knowledge, Knowledge]):
async def check_embedding_process(r: Knowledge) -> bool:
# If check embedding is true, we will run extract document embedding.
from dbgpt.rag.operators import VectorStorageOperator
from dbgpt_ext.rag.operators import VectorStorageOperator
if VectorStorageOperator in download_cls_list:
return True
@ -100,7 +100,7 @@ class KnowledgeProcessBranchOperator(BranchOperator[Knowledge, Knowledge]):
async def check_full_text_process(r: Knowledge) -> bool:
# If check full text is true, we will run extract document keywords.
from dbgpt.rag.operators.full_text import FullTextStorageOperator
from dbgpt_ext.rag.operators.full_text import FullTextStorageOperator
if FullTextStorageOperator in download_cls_list:
return True

View File

@ -58,7 +58,7 @@ class VectorStorageOperator(MapOperator[List[Chunk], List[Chunk]]):
"""Init the datasource operator."""
MapOperator.__init__(self, **kwargs)
self._vector_store = vector_store
self._embeddings = vector_store.get_config().embedding_fn
self._embeddings = vector_store.embeddings
self._max_chunks_once_load = max_chunks_once_load
self.vector_store = vector_store

View File

@ -7,13 +7,55 @@ import os
from dataclasses import dataclass, field
from typing import List
from dbgpt.core.awel.flow import register_resource, ResourceCategory, Parameter
from dbgpt.storage.graph_store.base import GraphStoreBase, GraphStoreConfig
from dbgpt.storage.graph_store.graph import GraphElemType
from dbgpt_ext.datasource.conn_tugraph import TuGraphConnector
from dbgpt.util.i18n_utils import _
logger = logging.getLogger(__name__)
@register_resource(
_("TuGraph Graph Config"),
"tugraph_config",
category=ResourceCategory.KNOWLEDGE_GRAPH,
description=_("TuGraph config."),
parameters=[
Parameter.build_from(
_("host"),
"host",
str,
optional=True,
default="127.0.0.1",
description=_("TuGraph host"),
),
Parameter.build_from(
_("port"),
"port",
int,
optional=True,
default="7687",
description=_("TuGraph port"),
),
Parameter.build_from(
_("username"),
"username",
str,
optional=True,
default="admin",
description=_("TuGraph username"),
),
Parameter.build_from(
_("password"),
"password",
str,
optional=True,
default="73@TuGraph",
description=_("TuGraph password"),
),
],
)
@dataclass
class TuGraphStoreConfig(GraphStoreConfig):
"""TuGraph store config."""

View File

@ -285,6 +285,12 @@ class CommunitySummaryKnowledgeGraph(BuiltinKnowledgeGraph):
"""Get the knowledge graph config."""
return self._config
@property
def embeddings(self) -> Embeddings:
"""Get the knowledge graph config."""
return self._embedding_fn
async def aload_document(self, chunks: List[Chunk]) -> List[str]:
"""Extract and persist graph from the document file."""
if not self.vector_name_exists():

View File

@ -4,7 +4,7 @@ import asyncio
import logging
import os
from dataclasses import dataclass, field
from typing import List, Optional
from typing import List, Optional, Any
from dbgpt.core import Chunk, Embeddings, LLMClient
from dbgpt.core.awel.flow import Parameter, ResourceCategory, register_resource
@ -68,50 +68,50 @@ GRAPH_PARAMETERS = [
]
@register_resource(
_("Builtin Graph Config"),
"knowledge_graph_config",
category=ResourceCategory.KNOWLEDGE_GRAPH,
description=_("knowledge graph config."),
parameters=[
*GRAPH_PARAMETERS,
Parameter.build_from(
_("Knowledge Graph Type"),
"graph_store_type",
str,
description=_("graph store type."),
optional=True,
default="TuGraph",
),
Parameter.build_from(
_("LLM Client"),
"llm_client",
LLMClient,
description=_("llm client for extract graph triplets."),
),
Parameter.build_from(
_("LLM Model Name"),
"model_name",
str,
description=_("llm model name."),
optional=True,
default=None,
),
],
)
@dataclass
class BuiltinKnowledgeGraphConfig(KnowledgeGraphConfig):
"""Builtin knowledge graph config."""
__type__ = "tugraph"
llm_model: Optional[str] = field(
default=None, metadata={"description": "llm model name."}
)
graph_type: Optional[str] = field(
default="TuGraph", metadata={"description": "graph store type."}
)
# @register_resource(
# _("Builtin Graph Config"),
# "knowledge_graph_config",
# category=ResourceCategory.KNOWLEDGE_GRAPH,
# description=_("knowledge graph config."),
# parameters=[
# *GRAPH_PARAMETERS,
# Parameter.build_from(
# _("Knowledge Graph Type"),
# "graph_store_type",
# str,
# description=_("graph store type."),
# optional=True,
# default="TuGraph",
# ),
# Parameter.build_from(
# _("LLM Client"),
# "llm_client",
# LLMClient,
# description=_("llm client for extract graph triplets."),
# ),
# Parameter.build_from(
# _("LLM Model Name"),
# "model_name",
# str,
# description=_("llm model name."),
# optional=True,
# default=None,
# ),
# ],
# )
# @dataclass
# class BuiltinKnowledgeGraphConfig(KnowledgeGraphConfig):
# """Builtin knowledge graph config."""
#
# __type__ = "tugraph"
#
# llm_model: Optional[str] = field(
# default=None, metadata={"description": "llm model name."}
# )
#
# graph_type: Optional[str] = field(
# default="TuGraph", metadata={"description": "graph store type."}
# )
@register_resource(
@ -121,13 +121,34 @@ class BuiltinKnowledgeGraphConfig(KnowledgeGraphConfig):
description=_("Builtin Knowledge Graph."),
parameters=[
Parameter.build_from(
_("Builtin Knowledge Graph Config."),
_("Graph Store Config"),
"config",
BuiltinKnowledgeGraphConfig,
description=_("Builtin Knowledge Graph Config."),
GraphStoreConfig,
description=_("graph store config."),
),
Parameter.build_from(
_("Graph Store Name"),
"name",
str,
optional=True,
default="dbgpt",
description=_("Graph Store Name"),
),
Parameter.build_from(
_("LLM Client"),
"llm_client",
LLMClient,
description=_("llm client for extract graph triplets."),
),
Parameter.build_from(
_("LLM Model Name"),
"llm_model",
str,
description=_("kg extract llm model name."),
optional=True,
default=None,
),
],
)
class BuiltinKnowledgeGraph(KnowledgeGraphBase):
@ -168,6 +189,11 @@ class BuiltinKnowledgeGraph(KnowledgeGraphBase):
"""Get the knowledge graph config."""
return self._config
@property
def embeddings(self) -> Any:
"""Get the knowledge graph config."""
return None
def load_document(self, chunks: List[Chunk]) -> List[str]:
"""Extract and persist triplets to graph store."""

View File

@ -13,7 +13,7 @@ from dbgpt.core.awel.flow import Parameter, ResourceCategory, register_resource
from dbgpt.storage.vector_store.base import (
_COMMON_PARAMETERS,
VectorStoreBase,
VectorStoreConfig,
VectorStoreConfig, _VECTOR_STORE_COMMON_PARAMETERS,
)
from dbgpt.storage.vector_store.filters import FilterOperator, MetadataFilters
from dbgpt.util import string_utils
@ -77,6 +77,7 @@ class ChromaVectorConfig(VectorStoreConfig):
optional=True,
default=None,
),
*_VECTOR_STORE_COMMON_PARAMETERS,
],
)
class ChromaStore(VectorStoreBase):

View File

@ -12,7 +12,7 @@ from dbgpt.core.awel.flow import Parameter, ResourceCategory, register_resource
from dbgpt.storage.vector_store.base import (
_COMMON_PARAMETERS,
VectorStoreBase,
VectorStoreConfig,
VectorStoreConfig, _VECTOR_STORE_COMMON_PARAMETERS,
)
from dbgpt.storage.vector_store.filters import MetadataFilters
from dbgpt.util import string_utils
@ -145,6 +145,7 @@ class ElasticsearchStoreConfig(VectorStoreConfig):
optional=True,
default=None,
),
*_VECTOR_STORE_COMMON_PARAMETERS,
],
)
class ElasticStore(VectorStoreBase):

View File

@ -13,7 +13,7 @@ from dbgpt.core.awel.flow import Parameter, ResourceCategory, register_resource
from dbgpt.storage.vector_store.base import (
_COMMON_PARAMETERS,
VectorStoreBase,
VectorStoreConfig,
VectorStoreConfig, _VECTOR_STORE_COMMON_PARAMETERS,
)
from dbgpt.storage.vector_store.filters import FilterOperator, MetadataFilters
from dbgpt.util import string_utils
@ -185,6 +185,7 @@ class MilvusVectorConfig(VectorStoreConfig):
optional=True,
default=None,
),
*_VECTOR_STORE_COMMON_PARAMETERS,
],
)
class MilvusStore(VectorStoreBase):
@ -561,7 +562,7 @@ class MilvusStore(VectorStoreBase):
# use default index params.
if param is None:
index_type = self.col.indexes[0].params["index_type"]
param = self.index_params_map[index_type].get("params")
param = self.index_params_map[index_type]
# query text embedding.
query_vector = self.embedding.embed_query(query)
# Determine result metadata fields.

View File

@ -17,7 +17,7 @@ from dbgpt.core.awel.flow import Parameter, ResourceCategory, register_resource
from dbgpt.storage.vector_store.base import (
_COMMON_PARAMETERS,
VectorStoreBase,
VectorStoreConfig,
VectorStoreConfig, _VECTOR_STORE_COMMON_PARAMETERS,
)
from dbgpt.storage.vector_store.filters import FilterOperator, MetadataFilters
from dbgpt.util.i18n_utils import _
@ -180,6 +180,7 @@ class OceanBaseConfig(VectorStoreConfig):
optional=True,
default=None,
),
*_VECTOR_STORE_COMMON_PARAMETERS,
],
)
class OceanBaseStore(VectorStoreBase):

View File

@ -9,7 +9,7 @@ from dbgpt.core.awel.flow import Parameter, ResourceCategory, register_resource
from dbgpt.storage.vector_store.base import (
_COMMON_PARAMETERS,
VectorStoreBase,
VectorStoreConfig,
VectorStoreConfig, _VECTOR_STORE_COMMON_PARAMETERS,
)
from dbgpt.storage.vector_store.filters import MetadataFilters
from dbgpt.util.i18n_utils import _
@ -70,6 +70,7 @@ class PGVectorConfig(VectorStoreConfig):
optional=True,
default=None,
),
*_VECTOR_STORE_COMMON_PARAMETERS,
],
)
class PGVectorStore(VectorStoreBase):

View File

@ -10,7 +10,7 @@ from dbgpt.core.awel.flow import Parameter, ResourceCategory, register_resource
from dbgpt.storage.vector_store.base import (
_COMMON_PARAMETERS,
VectorStoreBase,
VectorStoreConfig,
VectorStoreConfig, _VECTOR_STORE_COMMON_PARAMETERS,
)
from dbgpt.storage.vector_store.filters import MetadataFilters
from dbgpt.util.i18n_utils import _
@ -84,6 +84,7 @@ class WeaviateVectorConfig(VectorStoreConfig):
optional=True,
default=None,
),
*_VECTOR_STORE_COMMON_PARAMETERS,
],
)
class WeaviateStore(VectorStoreBase):