mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-03 10:05:13 +00:00
refactor: Refactor proxy LLM (#1064)
This commit is contained in:
@@ -1,259 +1,231 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
from __future__ import annotations
|
||||
|
||||
import importlib.metadata as metadata
|
||||
import logging
|
||||
import os
|
||||
from typing import List
|
||||
from concurrent.futures import Executor
|
||||
from typing import TYPE_CHECKING, Any, AsyncIterator, Dict, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
from dbgpt.core.interface.message import ModelMessage, ModelMessageRoleType
|
||||
from dbgpt.core import (
|
||||
MessageConverter,
|
||||
ModelMetadata,
|
||||
ModelOutput,
|
||||
ModelRequest,
|
||||
ModelRequestContext,
|
||||
)
|
||||
from dbgpt.model.parameter import ProxyModelParameters
|
||||
from dbgpt.model.proxy.base import ProxyLLMClient
|
||||
from dbgpt.model.proxy.llms.proxy_model import ProxyModel
|
||||
from dbgpt.model.utils.chatgpt_utils import OpenAIParameters
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from httpx._types import ProxiesTypes
|
||||
from openai import AsyncAzureOpenAI, AsyncOpenAI
|
||||
|
||||
ClientType = Union[AsyncAzureOpenAI, AsyncOpenAI]
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _initialize_openai(params: ProxyModelParameters):
|
||||
try:
|
||||
import openai
|
||||
except ImportError as exc:
|
||||
raise ValueError(
|
||||
"Could not import python package: openai "
|
||||
"Please install openai by command `pip install openai` "
|
||||
) from exc
|
||||
|
||||
api_type = params.proxy_api_type or os.getenv("OPENAI_API_TYPE", "open_ai")
|
||||
|
||||
api_base = params.proxy_api_base or os.getenv(
|
||||
"OPENAI_API_TYPE",
|
||||
os.getenv("AZURE_OPENAI_ENDPOINT") if api_type == "azure" else None,
|
||||
)
|
||||
api_key = params.proxy_api_key or os.getenv(
|
||||
"OPENAI_API_KEY",
|
||||
os.getenv("AZURE_OPENAI_KEY") if api_type == "azure" else None,
|
||||
)
|
||||
api_version = params.proxy_api_version or os.getenv("OPENAI_API_VERSION")
|
||||
|
||||
if not api_base and params.proxy_server_url:
|
||||
# Adapt previous proxy_server_url configuration
|
||||
api_base = params.proxy_server_url.split("/chat/completions")[0]
|
||||
if api_type:
|
||||
openai.api_type = api_type
|
||||
if api_base:
|
||||
openai.api_base = api_base
|
||||
if api_key:
|
||||
openai.api_key = api_key
|
||||
if api_version:
|
||||
openai.api_version = api_version
|
||||
if params.http_proxy:
|
||||
openai.proxy = params.http_proxy
|
||||
|
||||
openai_params = {
|
||||
"api_type": api_type,
|
||||
"api_base": api_base,
|
||||
"api_version": api_version,
|
||||
"proxy": params.http_proxy,
|
||||
}
|
||||
|
||||
return openai_params
|
||||
|
||||
|
||||
def _initialize_openai_v1(params: ProxyModelParameters):
|
||||
try:
|
||||
from openai import OpenAI
|
||||
except ImportError as exc:
|
||||
raise ValueError(
|
||||
"Could not import python package: openai "
|
||||
"Please install openai by command `pip install openai"
|
||||
)
|
||||
|
||||
api_type = params.proxy_api_type or os.getenv("OPENAI_API_TYPE", "open_ai")
|
||||
|
||||
base_url = params.proxy_api_base or os.getenv(
|
||||
"OPENAI_API_BASE",
|
||||
os.getenv("AZURE_OPENAI_ENDPOINT") if api_type == "azure" else None,
|
||||
)
|
||||
api_key = params.proxy_api_key or os.getenv(
|
||||
"OPENAI_API_KEY",
|
||||
os.getenv("AZURE_OPENAI_KEY") if api_type == "azure" else None,
|
||||
)
|
||||
api_version = params.proxy_api_version or os.getenv("OPENAI_API_VERSION")
|
||||
|
||||
if not base_url and params.proxy_server_url:
|
||||
# Adapt previous proxy_server_url configuration
|
||||
base_url = params.proxy_server_url.split("/chat/completions")[0]
|
||||
|
||||
proxies = params.http_proxy
|
||||
openai_params = {
|
||||
"api_key": api_key,
|
||||
"base_url": base_url,
|
||||
}
|
||||
return openai_params, api_type, api_version, proxies
|
||||
|
||||
|
||||
def __convert_2_gpt_messages(messages: List[ModelMessage]):
|
||||
gpt_messages = []
|
||||
last_usr_message = ""
|
||||
system_messages = []
|
||||
|
||||
# TODO: We can't change message order in low level
|
||||
for message in messages:
|
||||
if message.role == ModelMessageRoleType.HUMAN or message.role == "user":
|
||||
last_usr_message = message.content
|
||||
elif message.role == ModelMessageRoleType.SYSTEM:
|
||||
system_messages.append(message.content)
|
||||
elif message.role == ModelMessageRoleType.AI or message.role == "assistant":
|
||||
last_ai_message = message.content
|
||||
gpt_messages.append({"role": "user", "content": last_usr_message})
|
||||
gpt_messages.append({"role": "assistant", "content": last_ai_message})
|
||||
|
||||
if len(system_messages) > 0:
|
||||
if len(system_messages) < 2:
|
||||
gpt_messages.insert(0, {"role": "system", "content": system_messages[0]})
|
||||
gpt_messages.append({"role": "user", "content": last_usr_message})
|
||||
else:
|
||||
gpt_messages.append({"role": "user", "content": system_messages[1]})
|
||||
else:
|
||||
last_message = messages[-1]
|
||||
if last_message.role == ModelMessageRoleType.HUMAN:
|
||||
gpt_messages.append({"role": "user", "content": last_message.content})
|
||||
|
||||
return gpt_messages
|
||||
|
||||
|
||||
def _build_request(model: ProxyModel, params):
|
||||
model_params = model.get_params()
|
||||
logger.info(f"Model: {model}, model_params: {model_params}")
|
||||
|
||||
messages: List[ModelMessage] = params["messages"]
|
||||
|
||||
# history = __convert_2_gpt_messages(messages)
|
||||
convert_to_compatible_format = params.get("convert_to_compatible_format", False)
|
||||
history = ModelMessage.to_openai_messages(
|
||||
messages, convert_to_compatible_format=convert_to_compatible_format
|
||||
)
|
||||
payloads = {
|
||||
"temperature": params.get("temperature"),
|
||||
"max_tokens": params.get("max_new_tokens"),
|
||||
"stream": True,
|
||||
}
|
||||
proxyllm_backend = model_params.proxyllm_backend
|
||||
|
||||
if metadata.version("openai") >= "1.0.0":
|
||||
openai_params, api_type, api_version, proxies = _initialize_openai_v1(
|
||||
model_params
|
||||
)
|
||||
proxyllm_backend = proxyllm_backend or "gpt-3.5-turbo"
|
||||
payloads["model"] = proxyllm_backend
|
||||
else:
|
||||
openai_params = _initialize_openai(model_params)
|
||||
if openai_params["api_type"] == "azure":
|
||||
# engine = "deployment_name".
|
||||
proxyllm_backend = proxyllm_backend or "gpt-35-turbo"
|
||||
payloads["engine"] = proxyllm_backend
|
||||
else:
|
||||
proxyllm_backend = proxyllm_backend or "gpt-3.5-turbo"
|
||||
payloads["model"] = proxyllm_backend
|
||||
|
||||
logger.info(f"Send request to real model {proxyllm_backend}")
|
||||
return history, payloads
|
||||
|
||||
|
||||
def chatgpt_generate_stream(
|
||||
async def chatgpt_generate_stream(
|
||||
model: ProxyModel, tokenizer, params, device, context_len=2048
|
||||
):
|
||||
if metadata.version("openai") >= "1.0.0":
|
||||
model_params = model.get_params()
|
||||
openai_params, api_type, api_version, proxies = _initialize_openai_v1(
|
||||
model_params
|
||||
client: OpenAILLMClient = model.proxy_llm_client
|
||||
context = ModelRequestContext(stream=True, user_name=params.get("user_name"))
|
||||
request = ModelRequest.build_request(
|
||||
client.default_model,
|
||||
messages=params["messages"],
|
||||
temperature=params.get("temperature"),
|
||||
context=context,
|
||||
max_new_tokens=params.get("max_new_tokens"),
|
||||
)
|
||||
async for r in client.generate_stream(request):
|
||||
yield r
|
||||
|
||||
|
||||
class OpenAILLMClient(ProxyLLMClient):
|
||||
def __init__(
|
||||
self,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
api_type: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
model: Optional[str] = None,
|
||||
proxies: Optional["ProxiesTypes"] = None,
|
||||
timeout: Optional[int] = 240,
|
||||
model_alias: Optional[str] = "chatgpt_proxyllm",
|
||||
context_length: Optional[int] = 8192,
|
||||
openai_client: Optional["ClientType"] = None,
|
||||
openai_kwargs: Optional[Dict[str, Any]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
try:
|
||||
import openai
|
||||
except ImportError as exc:
|
||||
raise ValueError(
|
||||
"Could not import python package: openai "
|
||||
"Please install openai by command `pip install openai"
|
||||
) from exc
|
||||
self._openai_version = metadata.version("openai")
|
||||
self._openai_less_then_v1 = not self._openai_version >= "1.0.0"
|
||||
self._init_params = OpenAIParameters(
|
||||
api_type=api_type,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
proxies=proxies,
|
||||
full_url=kwargs.get("full_url"),
|
||||
)
|
||||
history, payloads = _build_request(model, params)
|
||||
if api_type == "azure":
|
||||
from openai import AzureOpenAI
|
||||
|
||||
client = AzureOpenAI(
|
||||
api_key=openai_params["api_key"],
|
||||
api_version=api_version,
|
||||
azure_endpoint=openai_params["base_url"],
|
||||
http_client=httpx.Client(proxies=proxies),
|
||||
self._model = model
|
||||
self._proxies = proxies
|
||||
self._timeout = timeout
|
||||
self._model_alias = model_alias
|
||||
self._context_length = context_length
|
||||
self._api_type = api_type
|
||||
self._client = openai_client
|
||||
self._openai_kwargs = openai_kwargs or {}
|
||||
super().__init__(model_names=[model_alias], context_length=context_length)
|
||||
|
||||
@classmethod
|
||||
def new_client(
|
||||
cls,
|
||||
model_params: ProxyModelParameters,
|
||||
default_executor: Optional[Executor] = None,
|
||||
) -> "OpenAILLMClient":
|
||||
return cls(
|
||||
api_key=model_params.proxy_api_key,
|
||||
api_base=model_params.proxy_api_base,
|
||||
api_type=model_params.proxy_api_type,
|
||||
api_version=model_params.proxy_api_version,
|
||||
model=model_params.proxyllm_backend,
|
||||
proxies=model_params.http_proxy,
|
||||
model_alias=model_params.model_name,
|
||||
context_length=max(model_params.max_context_size, 8192),
|
||||
full_url=model_params.proxy_server_url,
|
||||
)
|
||||
|
||||
@property
|
||||
def client(self) -> ClientType:
|
||||
if self._openai_less_then_v1:
|
||||
raise ValueError(
|
||||
"Current model (Load by OpenAILLMClient) require openai.__version__>=1.0.0"
|
||||
)
|
||||
else:
|
||||
from openai import OpenAI
|
||||
if self._client is None:
|
||||
from dbgpt.model.utils.chatgpt_utils import _build_openai_client
|
||||
|
||||
client = OpenAI(**openai_params, http_client=httpx.Client(proxies=proxies))
|
||||
res = client.chat.completions.create(messages=history, **payloads)
|
||||
self._api_type, self._client = _build_openai_client(
|
||||
init_params=self._init_params
|
||||
)
|
||||
return self._client
|
||||
|
||||
@property
|
||||
def default_model(self) -> str:
|
||||
model = self._model
|
||||
if not model:
|
||||
model = "gpt-35-turbo" if self._api_type == "azure" else "gpt-3.5-turbo"
|
||||
return model
|
||||
|
||||
def _build_request(
|
||||
self, request: ModelRequest, stream: Optional[bool] = False
|
||||
) -> Dict[str, Any]:
|
||||
payload = {"stream": stream}
|
||||
model = request.model or self.default_model
|
||||
if self._openai_less_then_v1 and self._api_type == "azure":
|
||||
payload["engine"] = model
|
||||
else:
|
||||
payload["model"] = model
|
||||
# Apply openai kwargs
|
||||
for k, v in self._openai_kwargs.items():
|
||||
payload[k] = v
|
||||
if request.temperature:
|
||||
payload["temperature"] = request.temperature
|
||||
if request.max_new_tokens:
|
||||
payload["max_tokens"] = request.max_new_tokens
|
||||
return payload
|
||||
|
||||
async def generate(
|
||||
self,
|
||||
request: ModelRequest,
|
||||
message_converter: Optional[MessageConverter] = None,
|
||||
) -> ModelOutput:
|
||||
request = self.local_covert_message(request, message_converter)
|
||||
messages = request.to_common_messages()
|
||||
payload = self._build_request(request)
|
||||
logger.info(
|
||||
f"Send request to openai({self._openai_version}), payload: {payload}\n\n messages:\n{messages}"
|
||||
)
|
||||
try:
|
||||
if self._openai_less_then_v1:
|
||||
return await self.generate_less_then_v1(messages, payload)
|
||||
else:
|
||||
return await self.generate_v1(messages, payload)
|
||||
except Exception as e:
|
||||
return ModelOutput(
|
||||
text=f"**LLMServer Generate Error, Please CheckErrorInfo.**: {e}",
|
||||
error_code=1,
|
||||
)
|
||||
|
||||
async def generate_stream(
|
||||
self,
|
||||
request: ModelRequest,
|
||||
message_converter: Optional[MessageConverter] = None,
|
||||
) -> AsyncIterator[ModelOutput]:
|
||||
request = self.local_covert_message(request, message_converter)
|
||||
messages = request.to_common_messages()
|
||||
payload = self._build_request(request, stream=True)
|
||||
logger.info(
|
||||
f"Send request to openai({self._openai_version}), payload: {payload}\n\n messages:\n{messages}"
|
||||
)
|
||||
if self._openai_less_then_v1:
|
||||
async for r in self.generate_stream_less_then_v1(messages, payload):
|
||||
yield r
|
||||
else:
|
||||
async for r in self.generate_stream_v1(messages, payload):
|
||||
yield r
|
||||
|
||||
async def generate_v1(
|
||||
self, messages: List[Dict[str, Any]], payload: Dict[str, Any]
|
||||
) -> ModelOutput:
|
||||
chat_completion = await self.client.chat.completions.create(
|
||||
messages=messages, **payload
|
||||
)
|
||||
text = chat_completion.choices[0].message.content
|
||||
usage = chat_completion.usage.dict()
|
||||
return ModelOutput(text=text, error_code=0, usage=usage)
|
||||
|
||||
async def generate_less_then_v1(
|
||||
self, messages: List[Dict[str, Any]], payload: Dict[str, Any]
|
||||
) -> ModelOutput:
|
||||
import openai
|
||||
|
||||
chat_completion = await openai.ChatCompletion.acreate(
|
||||
messages=messages, **payload
|
||||
)
|
||||
text = chat_completion.choices[0].message.content
|
||||
usage = chat_completion.usage.to_dict()
|
||||
return ModelOutput(text=text, error_code=0, usage=usage)
|
||||
|
||||
async def generate_stream_v1(
|
||||
self, messages: List[Dict[str, Any]], payload: Dict[str, Any]
|
||||
) -> AsyncIterator[ModelOutput]:
|
||||
chat_completion = await self.client.chat.completions.create(
|
||||
messages=messages, **payload
|
||||
)
|
||||
text = ""
|
||||
for r in res:
|
||||
# logger.info(str(r))
|
||||
# Azure Openai reponse may have empty choices body in the first chunk
|
||||
# to avoid index out of range error
|
||||
async for r in chat_completion:
|
||||
if len(r.choices) == 0:
|
||||
continue
|
||||
if r.choices[0].delta.content is not None:
|
||||
content = r.choices[0].delta.content
|
||||
text += content
|
||||
yield text
|
||||
yield ModelOutput(text=text, error_code=0)
|
||||
|
||||
else:
|
||||
async def generate_stream_less_then_v1(
|
||||
self, messages: List[Dict[str, Any]], payload: Dict[str, Any]
|
||||
) -> AsyncIterator[ModelOutput]:
|
||||
import openai
|
||||
|
||||
history, payloads = _build_request(model, params)
|
||||
|
||||
res = openai.ChatCompletion.create(messages=history, **payloads)
|
||||
|
||||
text = ""
|
||||
for r in res:
|
||||
if len(r.choices) == 0:
|
||||
continue
|
||||
if r["choices"][0]["delta"].get("content") is not None:
|
||||
content = r["choices"][0]["delta"]["content"]
|
||||
text += content
|
||||
yield text
|
||||
|
||||
|
||||
async def async_chatgpt_generate_stream(
|
||||
model: ProxyModel, tokenizer, params, device, context_len=2048
|
||||
):
|
||||
if metadata.version("openai") >= "1.0.0":
|
||||
model_params = model.get_params()
|
||||
openai_params, api_type, api_version, proxies = _initialize_openai_v1(
|
||||
model_params
|
||||
)
|
||||
history, payloads = _build_request(model, params)
|
||||
if api_type == "azure":
|
||||
from openai import AsyncAzureOpenAI
|
||||
|
||||
client = AsyncAzureOpenAI(
|
||||
api_key=openai_params["api_key"],
|
||||
api_version=api_version,
|
||||
azure_endpoint=openai_params["base_url"],
|
||||
http_client=httpx.AsyncClient(proxies=proxies),
|
||||
)
|
||||
else:
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
client = AsyncOpenAI(
|
||||
**openai_params, http_client=httpx.AsyncClient(proxies=proxies)
|
||||
)
|
||||
|
||||
res = await client.chat.completions.create(messages=history, **payloads)
|
||||
text = ""
|
||||
for r in res:
|
||||
if not r.get("choices"):
|
||||
continue
|
||||
if r.choices[0].delta.content is not None:
|
||||
content = r.choices[0].delta.content
|
||||
text += content
|
||||
yield text
|
||||
else:
|
||||
import openai
|
||||
|
||||
history, payloads = _build_request(model, params)
|
||||
|
||||
res = await openai.ChatCompletion.acreate(messages=history, **payloads)
|
||||
|
||||
res = await openai.ChatCompletion.acreate(messages=messages, **payload)
|
||||
text = ""
|
||||
async for r in res:
|
||||
if not r.get("choices"):
|
||||
@@ -261,4 +233,21 @@ async def async_chatgpt_generate_stream(
|
||||
if r["choices"][0]["delta"].get("content") is not None:
|
||||
content = r["choices"][0]["delta"]["content"]
|
||||
text += content
|
||||
yield text
|
||||
yield ModelOutput(text=text, error_code=0)
|
||||
|
||||
async def models(self) -> List[ModelMetadata]:
|
||||
model_metadata = ModelMetadata(
|
||||
model=self._model_alias,
|
||||
context_length=await self.get_context_length(),
|
||||
)
|
||||
return [model_metadata]
|
||||
|
||||
async def get_context_length(self) -> int:
|
||||
"""Get the context length of the model.
|
||||
|
||||
Returns:
|
||||
int: The context length.
|
||||
# TODO: This is a temporary solution. We should have a better way to get the context length.
|
||||
eg. get real context length from the openai api.
|
||||
"""
|
||||
return self._context_length
|
||||
|
Reference in New Issue
Block a user