mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-02 01:27:14 +00:00
refactor: Refactor proxy LLM (#1064)
This commit is contained in:
@@ -1,79 +1,109 @@
|
||||
import logging
|
||||
from typing import List
|
||||
from concurrent.futures import Executor
|
||||
from typing import Iterator, Optional
|
||||
|
||||
from dbgpt.core.interface.message import ModelMessage, ModelMessageRoleType
|
||||
from dbgpt.core import MessageConverter, ModelOutput, ModelRequest, ModelRequestContext
|
||||
from dbgpt.model.parameter import ProxyModelParameters
|
||||
from dbgpt.model.proxy.base import ProxyLLMClient
|
||||
from dbgpt.model.proxy.llms.proxy_model import ProxyModel
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def __convert_2_tongyi_messages(messages: List[ModelMessage]):
|
||||
chat_round = 0
|
||||
tongyi_messages = []
|
||||
|
||||
last_usr_message = ""
|
||||
system_messages = []
|
||||
|
||||
for message in messages:
|
||||
if message.role == ModelMessageRoleType.HUMAN:
|
||||
last_usr_message = message.content
|
||||
elif message.role == ModelMessageRoleType.SYSTEM:
|
||||
system_messages.append(message.content)
|
||||
elif message.role == ModelMessageRoleType.AI:
|
||||
last_ai_message = message.content
|
||||
tongyi_messages.append({"role": "user", "content": last_usr_message})
|
||||
tongyi_messages.append({"role": "assistant", "content": last_ai_message})
|
||||
if len(system_messages) > 0:
|
||||
if len(system_messages) < 2:
|
||||
tongyi_messages.insert(0, {"role": "system", "content": system_messages[0]})
|
||||
tongyi_messages.append({"role": "user", "content": last_usr_message})
|
||||
else:
|
||||
tongyi_messages.append({"role": "user", "content": system_messages[1]})
|
||||
else:
|
||||
last_message = messages[-1]
|
||||
if last_message.role == ModelMessageRoleType.HUMAN:
|
||||
tongyi_messages.append({"role": "user", "content": last_message.content})
|
||||
|
||||
return tongyi_messages
|
||||
|
||||
|
||||
def tongyi_generate_stream(
|
||||
model: ProxyModel, tokenizer, params, device, context_len=2048
|
||||
):
|
||||
import dashscope
|
||||
from dashscope import Generation
|
||||
|
||||
model_params = model.get_params()
|
||||
print(f"Model: {model}, model_params: {model_params}")
|
||||
|
||||
proxy_api_key = model_params.proxy_api_key
|
||||
dashscope.api_key = proxy_api_key
|
||||
|
||||
proxyllm_backend = model_params.proxyllm_backend
|
||||
if not proxyllm_backend:
|
||||
proxyllm_backend = Generation.Models.qwen_turbo # By Default qwen_turbo
|
||||
|
||||
messages: List[ModelMessage] = params["messages"]
|
||||
convert_to_compatible_format = params.get("convert_to_compatible_format", False)
|
||||
|
||||
if convert_to_compatible_format:
|
||||
history = __convert_2_tongyi_messages(messages)
|
||||
else:
|
||||
history = ModelMessage.to_openai_messages(messages)
|
||||
gen = Generation()
|
||||
res = gen.call(
|
||||
proxyllm_backend,
|
||||
messages=history,
|
||||
top_p=params.get("top_p", 0.8),
|
||||
stream=True,
|
||||
result_format="message",
|
||||
client: TongyiLLMClient = model.proxy_llm_client
|
||||
context = ModelRequestContext(stream=True, user_name=params.get("user_name"))
|
||||
request = ModelRequest.build_request(
|
||||
client.default_model,
|
||||
messages=params["messages"],
|
||||
temperature=params.get("temperature"),
|
||||
context=context,
|
||||
max_new_tokens=params.get("max_new_tokens"),
|
||||
)
|
||||
for r in client.sync_generate_stream(request):
|
||||
yield r
|
||||
|
||||
for r in res:
|
||||
if r:
|
||||
if r["status_code"] == 200:
|
||||
content = r["output"]["choices"][0]["message"].get("content")
|
||||
yield content
|
||||
else:
|
||||
content = r["code"] + ":" + r["message"]
|
||||
yield content
|
||||
|
||||
class TongyiLLMClient(ProxyLLMClient):
|
||||
def __init__(
|
||||
self,
|
||||
model: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
api_region: Optional[str] = None,
|
||||
model_alias: Optional[str] = "tongyi_proxyllm",
|
||||
context_length: Optional[int] = 4096,
|
||||
executor: Optional[Executor] = None,
|
||||
):
|
||||
try:
|
||||
import dashscope
|
||||
from dashscope import Generation
|
||||
except ImportError as exc:
|
||||
raise ValueError(
|
||||
"Could not import python package: dashscope "
|
||||
"Please install dashscope by command `pip install dashscope"
|
||||
) from exc
|
||||
if not model:
|
||||
model = Generation.Models.qwen_turbo
|
||||
if api_key:
|
||||
dashscope.api_key = api_key
|
||||
if api_region:
|
||||
dashscope.api_region = api_region
|
||||
self._model = model
|
||||
self.default_model = self._model
|
||||
|
||||
super().__init__(
|
||||
model_names=[model, model_alias],
|
||||
context_length=context_length,
|
||||
executor=executor,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def new_client(
|
||||
cls,
|
||||
model_params: ProxyModelParameters,
|
||||
default_executor: Optional[Executor] = None,
|
||||
) -> "TongyiLLMClient":
|
||||
return cls(
|
||||
model=model_params.proxyllm_backend,
|
||||
api_key=model_params.proxy_api_key,
|
||||
model_alias=model_params.model_name,
|
||||
context_length=model_params.max_context_size,
|
||||
executor=default_executor,
|
||||
)
|
||||
|
||||
def sync_generate_stream(
|
||||
self,
|
||||
request: ModelRequest,
|
||||
message_converter: Optional[MessageConverter] = None,
|
||||
) -> Iterator[ModelOutput]:
|
||||
from dashscope import Generation
|
||||
|
||||
request = self.local_covert_message(request, message_converter)
|
||||
|
||||
messages = request.to_common_messages()
|
||||
|
||||
model = request.model or self._model
|
||||
try:
|
||||
gen = Generation()
|
||||
res = gen.call(
|
||||
model,
|
||||
messages=messages,
|
||||
top_p=0.8,
|
||||
stream=True,
|
||||
result_format="message",
|
||||
)
|
||||
for r in res:
|
||||
if r:
|
||||
if r["status_code"] == 200:
|
||||
content = r["output"]["choices"][0]["message"].get("content")
|
||||
yield ModelOutput(text=content, error_code=0)
|
||||
else:
|
||||
content = r["code"] + ":" + r["message"]
|
||||
yield ModelOutput(text=content, error_code=-1)
|
||||
except Exception as e:
|
||||
return ModelOutput(
|
||||
text=f"**LLMServer Generate Error, Please CheckErrorInfo.**: {e}",
|
||||
error_code=1,
|
||||
)
|
||||
|
Reference in New Issue
Block a user