mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-10-08 23:24:27 +00:00
refactor: Refactor proxy LLM (#1064)
This commit is contained in:
@@ -3,34 +3,21 @@ from __future__ import annotations
|
||||
import importlib.metadata as metadata
|
||||
import logging
|
||||
import os
|
||||
from abc import ABC
|
||||
from dataclasses import dataclass
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
AsyncIterator,
|
||||
Awaitable,
|
||||
Callable,
|
||||
Dict,
|
||||
List,
|
||||
Optional,
|
||||
Tuple,
|
||||
Union,
|
||||
)
|
||||
|
||||
from dbgpt._private.pydantic import model_to_json
|
||||
from dbgpt.component import ComponentType
|
||||
from dbgpt.core.awel import BaseOperator, TransformStreamAbsOperator
|
||||
from dbgpt.core.interface.llm import (
|
||||
LLMClient,
|
||||
MessageConverter,
|
||||
ModelMetadata,
|
||||
ModelOutput,
|
||||
ModelRequest,
|
||||
)
|
||||
from dbgpt.core.awel import TransformStreamAbsOperator
|
||||
from dbgpt.core.interface.llm import ModelOutput
|
||||
from dbgpt.core.operator import BaseLLM
|
||||
from dbgpt.model.cluster import WorkerManagerFactory
|
||||
from dbgpt.model.cluster.client import DefaultLLMClient
|
||||
from dbgpt.model.utils.token_utils import ProxyTokenizerWrapper
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import httpx
|
||||
@@ -101,14 +88,14 @@ def _initialize_openai_v1(init_params: OpenAIParameters):
|
||||
return openai_params, api_type, api_version
|
||||
|
||||
|
||||
def _build_openai_client(init_params: OpenAIParameters):
|
||||
def _build_openai_client(init_params: OpenAIParameters) -> Tuple[str, ClientType]:
|
||||
import httpx
|
||||
|
||||
openai_params, api_type, api_version = _initialize_openai_v1(init_params)
|
||||
if api_type == "azure":
|
||||
from openai import AsyncAzureOpenAI
|
||||
|
||||
return AsyncAzureOpenAI(
|
||||
return api_type, AsyncAzureOpenAI(
|
||||
api_key=openai_params["api_key"],
|
||||
api_version=api_version,
|
||||
azure_endpoint=openai_params["base_url"],
|
||||
@@ -117,149 +104,11 @@ def _build_openai_client(init_params: OpenAIParameters):
|
||||
else:
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
return AsyncOpenAI(
|
||||
return api_type, AsyncOpenAI(
|
||||
**openai_params, http_client=httpx.AsyncClient(proxies=init_params.proxies)
|
||||
)
|
||||
|
||||
|
||||
class OpenAILLMClient(LLMClient):
|
||||
"""An implementation of LLMClient using OpenAI API.
|
||||
|
||||
In order to have as few dependencies as possible, we directly use the http API.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
api_type: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
model: Optional[str] = "gpt-3.5-turbo",
|
||||
proxies: Optional["ProxiesTypes"] = None,
|
||||
timeout: Optional[int] = 240,
|
||||
model_alias: Optional[str] = "chatgpt_proxyllm",
|
||||
context_length: Optional[int] = 8192,
|
||||
openai_client: Optional["ClientType"] = None,
|
||||
openai_kwargs: Optional[Dict[str, Any]] = None,
|
||||
):
|
||||
self._init_params = OpenAIParameters(
|
||||
api_type=api_type,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
proxies=proxies,
|
||||
)
|
||||
|
||||
self._model = model
|
||||
self._proxies = proxies
|
||||
self._timeout = timeout
|
||||
self._model_alias = model_alias
|
||||
self._context_length = context_length
|
||||
self._client = openai_client
|
||||
self._openai_kwargs = openai_kwargs or {}
|
||||
self._tokenizer = ProxyTokenizerWrapper()
|
||||
|
||||
@property
|
||||
def client(self) -> ClientType:
|
||||
if self._client is None:
|
||||
self._client = _build_openai_client(init_params=self._init_params)
|
||||
return self._client
|
||||
|
||||
def _build_request(
|
||||
self, request: ModelRequest, stream: Optional[bool] = False
|
||||
) -> Dict[str, Any]:
|
||||
payload = {"model": request.model or self._model, "stream": stream}
|
||||
|
||||
# Apply openai kwargs
|
||||
for k, v in self._openai_kwargs.items():
|
||||
payload[k] = v
|
||||
if request.temperature:
|
||||
payload["temperature"] = request.temperature
|
||||
if request.max_new_tokens:
|
||||
payload["max_tokens"] = request.max_new_tokens
|
||||
return payload
|
||||
|
||||
async def generate(
|
||||
self,
|
||||
request: ModelRequest,
|
||||
message_converter: Optional[MessageConverter] = None,
|
||||
) -> ModelOutput:
|
||||
request = await self.covert_message(request, message_converter)
|
||||
|
||||
messages = request.to_openai_messages()
|
||||
payload = self._build_request(request)
|
||||
logger.info(
|
||||
f"Send request to openai, payload: {payload}\n\n messages:\n{messages}"
|
||||
)
|
||||
try:
|
||||
chat_completion = await self.client.chat.completions.create(
|
||||
messages=messages, **payload
|
||||
)
|
||||
text = chat_completion.choices[0].message.content
|
||||
usage = chat_completion.usage.dict()
|
||||
return ModelOutput(text=text, error_code=0, usage=usage)
|
||||
except Exception as e:
|
||||
return ModelOutput(
|
||||
text=f"**LLMServer Generate Error, Please CheckErrorInfo.**: {e}",
|
||||
error_code=1,
|
||||
)
|
||||
|
||||
async def generate_stream(
|
||||
self,
|
||||
request: ModelRequest,
|
||||
message_converter: Optional[MessageConverter] = None,
|
||||
) -> AsyncIterator[ModelOutput]:
|
||||
request = await self.covert_message(request, message_converter)
|
||||
messages = request.to_openai_messages()
|
||||
payload = self._build_request(request, True)
|
||||
logger.info(
|
||||
f"Send request to openai, payload: {payload}\n\n messages:\n{messages}"
|
||||
)
|
||||
try:
|
||||
chat_completion = await self.client.chat.completions.create(
|
||||
messages=messages, **payload
|
||||
)
|
||||
text = ""
|
||||
async for r in chat_completion:
|
||||
if len(r.choices) == 0:
|
||||
continue
|
||||
if r.choices[0].delta.content is not None:
|
||||
content = r.choices[0].delta.content
|
||||
text += content
|
||||
yield ModelOutput(text=text, error_code=0)
|
||||
except Exception as e:
|
||||
yield ModelOutput(
|
||||
text=f"**LLMServer Generate Error, Please CheckErrorInfo.**: {e}",
|
||||
error_code=1,
|
||||
)
|
||||
|
||||
async def models(self) -> List[ModelMetadata]:
|
||||
model_metadata = ModelMetadata(
|
||||
model=self._model_alias,
|
||||
context_length=await self.get_context_length(),
|
||||
)
|
||||
return [model_metadata]
|
||||
|
||||
async def get_context_length(self) -> int:
|
||||
"""Get the context length of the model.
|
||||
|
||||
Returns:
|
||||
int: The context length.
|
||||
# TODO: This is a temporary solution. We should have a better way to get the context length.
|
||||
eg. get real context length from the openai api.
|
||||
"""
|
||||
return self._context_length
|
||||
|
||||
async def count_token(self, model: str, prompt: str) -> int:
|
||||
"""Count the number of tokens in a given prompt.
|
||||
|
||||
Args:
|
||||
model (str): The model name.
|
||||
prompt (str): The prompt.
|
||||
"""
|
||||
return self._tokenizer.count_token(prompt, model)
|
||||
|
||||
|
||||
class OpenAIStreamingOutputOperator(TransformStreamAbsOperator[ModelOutput, str]):
|
||||
"""Transform ModelOutput to openai stream format."""
|
||||
|
||||
|
Reference in New Issue
Block a user