Merge remote-tracking branch 'origin/source_embedding' into source_embedding
106
README.en.md
Normal file
@ -0,0 +1,106 @@
|
||||
# DB-GPT
|
||||
|
||||
---
|
||||
|
||||
[中文版](README.md)
|
||||
|
||||
A Open Database-GPT Experiment, interact your data and environment using the local GPT, no data leaks, 100% privately, 100% security.
|
||||
|
||||
## Features
|
||||
|
||||
- SQL Project
|
||||
- SQL Generate
|
||||
- SQL-diagnosis
|
||||
- Database-QA Based Knowledge
|
||||
|
||||
## Architecture Design
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/DB-GPT.png" width="600px" />
|
||||
</p>
|
||||
|
||||
[DB-GPT](https://github.com/csunny/DB-GPT) is an experimental open-source application that builds upon the [FastChat](https://github.com/lm-sys/FastChat) model and uses vicuna as its base model. Additionally, it looks like this application incorporates langchain and llama-index embedding knowledge to improve Database-QA capabilities.
|
||||
|
||||
Overall, it appears to be a sophisticated and innovative tool for working with databases. If you have any specific questions about how to use or implement DB-GPT in your work, please let me know and I'll do my best to assist you.
|
||||
|
||||
## Demo
|
||||
|
||||
Run on an RTX 4090 GPU (The origin mov not sped up!, [YouTube地址](https://www.youtube.com/watch?v=1PWI6F89LPo))
|
||||
|
||||
### Run
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/演示.gif" width="600px" />
|
||||
</p>
|
||||
|
||||
### SQL Generate
|
||||
|
||||
First, select the DataBase, you can use Schema to generate the SQL.。
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/SQLGEN.png" width="600px" />
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/exeable.png" width="600px" />
|
||||
</p>
|
||||
|
||||
### Database-QA
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/DB_QA.png" width="600px" />
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/VectorDBQA.png" width="600px" />
|
||||
</p>
|
||||
|
||||
## Deployment
|
||||
|
||||
### 1. Python Requirement
|
||||
|
||||
```bash
|
||||
$ python>=3.9
|
||||
$ pip install -r requirements.txt
|
||||
```
|
||||
|
||||
or if you use conda envirenment, you can use this command
|
||||
|
||||
```bash
|
||||
$ conda env create -f environment.yml
|
||||
```
|
||||
|
||||
### 2. MySQL
|
||||
|
||||
In this project examples, we connect mysql and run SQL-Generate. so you need install mysql local for test. recommand docker
|
||||
|
||||
```bash
|
||||
$ docker run --name=mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD=aa12345678 -dit mysql:latest
|
||||
```
|
||||
|
||||
### 3. LLM
|
||||
|
||||
- [vicuna](https://github.com/lm-sys/FastChat/blob/main/README.md#model-weights)
|
||||
- [Hugging Face](https://huggingface.co/Tribbiani/vicuna-7b)
|
||||
|
||||
```bash
|
||||
$ cd pilot/server
|
||||
$ python vicuna_server.py
|
||||
```
|
||||
|
||||
Run gradio webui
|
||||
|
||||
```bash
|
||||
$ python webserver.py
|
||||
```
|
||||
|
||||
## Thanks
|
||||
|
||||
- [FastChat](https://github.com/lm-sys/FastChat)
|
||||
- [vicuna-13b](https://huggingface.co/Tribbiani/vicuna-13b)
|
||||
- [langchain](https://github.com/hwchase17/langchain)
|
||||
- [llama-index](https://github.com/jerryjliu/llama_index) and [In-Context Learning](https://arxiv.org/abs/2301.00234)
|
||||
|
||||
## Licence
|
||||
|
||||
The MIT License (MIT)
|
137
README.md
@ -1,44 +1,58 @@
|
||||
# DB-GPT
|
||||
A Open Database-GPT Experiment, interact your data and environment using the local GPT, no data leaks, 100% privately, 100% security.
|
||||
# DB-GPT 
|
||||
|
||||

|
||||
---
|
||||
|
||||
一个数据库相关的GPT实验项目, 模型与数据全部本地化部署, 绝对保障数据的隐私安全。 同时此GPT项目可以直接本地部署连接到私有数据库, 进行私有数据处理。
|
||||
[English Edition](README.en.md)
|
||||
|
||||
[DB-GPT](https://github.com/csunny/DB-GPT) 是一个实验性的开源应用,它基于[FastChat](https://github.com/lm-sys/FastChat),并使用[vicuna-13b](https://huggingface.co/Tribbiani/vicuna-13b)作为基础模型。此外,此程序结合了[langchain](https://github.com/hwchase17/langchain)和[llama-index](https://github.com/jerryjliu/llama_index)基于现有知识库进行[In-Context Learning](https://arxiv.org/abs/2301.00234)来对其进行数据库相关知识的增强。它可以进行SQL生成、SQL诊断、数据库知识问答、数据处理等一系列的工作。
|
||||
专注于数据库垂直领域的 GPT 项目,提供大模型与数据的本地化使用方案,保障数据的隐私安全,适用企业内和个人。
|
||||
|
||||
## 特性一览
|
||||
|
||||
## 项目方案
|
||||
<img src="https://github.com/csunny/DB-GPT/blob/main/asserts/DB-GPT.png" width="600" margin-left="auto" margin-right="auto" >
|
||||
- SQL 语言能力
|
||||
- SQL生成
|
||||
- SQL诊断
|
||||
- 私域问答与数据处理
|
||||
- 数据库知识问答
|
||||
- 数据处理
|
||||
|
||||
[DB-GPT](https://github.com/csunny/DB-GPT) is an experimental open-source application that builds upon the [FastChat](https://github.com/lm-sys/FastChat) model and uses vicuna as its base model. Additionally, it looks like this application incorporates langchain and llama-index embedding knowledge to improve Database-QA capabilities.
|
||||
## 架构方案
|
||||
|
||||
Overall, it appears to be a sophisticated and innovative tool for working with databases. If you have any specific questions about how to use or implement DB-GPT in your work, please let me know and I'll do my best to assist you.
|
||||
<p align="center">
|
||||
<img src="./assets/DB-GPT.png" width="600px" />
|
||||
</p>
|
||||
|
||||
DB-GPT 基于[FastChat](https://github.com/lm-sys/FastChat) 构建大模型运行环境,并提供 vicuna 作为基础的大语言模型。此外,我们通过 langchain 和 llama-index 提供私域知识库问答能力。
|
||||
|
||||
## 运行效果演示
|
||||
Run on an RTX 4090 GPU (The origin mov not sped up!, [YouTube地址](https://www.youtube.com/watch?v=1PWI6F89LPo))
|
||||
- 运行演示
|
||||
## 效果演示
|
||||
|
||||

|
||||
示例通过 RTX 4090 GPU 演示,[YouTube 地址](https://www.youtube.com/watch?v=1PWI6F89LPo)
|
||||
### 运行环境演示
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/演示.gif" width="600px" />
|
||||
</p>
|
||||
|
||||
- SQL生成示例
|
||||
首先选择对应的数据库, 然后模型即可根据对应的数据库Schema信息生成SQL
|
||||
### SQL 生成
|
||||
|
||||
<img src="https://github.com/csunny/DB-GPT/blob/main/asserts/SQLGEN.png" width="600" margin-left="auto" margin-right="auto" >
|
||||
首先选择对应的数据库, 然后模型即可根据对应的数据库 Schema 信息生成 SQL。
|
||||
|
||||
The Generated SQL is runable.
|
||||
<p align="center">
|
||||
<img src="./assets/SQLGEN.png" width="600px" />
|
||||
</p>
|
||||
|
||||
<img src="https://github.com/csunny/DB-GPT/blob/main/asserts/exeable.png" width="600" margin-left="auto" margin-right="auto" >
|
||||
运行成功的效果如下面的演示:
|
||||
|
||||
- 数据库QA示例
|
||||
<p align="center">
|
||||
<img src="./assets/exeable.png" width="600px" />
|
||||
</p>
|
||||
|
||||
<img src="https://github.com/csunny/DB-GPT/blob/main/asserts/DB_QA.png" margin-left="auto" margin-right="auto" width="600">
|
||||
### 数据库问答
|
||||
|
||||
基于默认内置知识库QA
|
||||
<p align="center">
|
||||
<img src="./assets/DB_QA.png" width="600px" />
|
||||
</p>
|
||||
|
||||
<img src="https://github.com/csunny/DB-GPT/blob/main/asserts/VectorDBQA.png" width="600" margin-left="auto" margin-right="auto" >
|
||||
基于默认内置知识库。
|
||||
|
||||
# Dependencies
|
||||
1. First you need to install python requirements.
|
||||
@ -50,18 +64,36 @@ or if you use conda envirenment, you can use this command
|
||||
```
|
||||
cd DB-GPT
|
||||
conda env create -f environment.yml
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/VectorDBQA.png" width="600px" />
|
||||
</p>
|
||||
|
||||
## 部署
|
||||
|
||||
### 1. 安装 Python
|
||||
|
||||
```bash
|
||||
$ python>=3.10
|
||||
$ pip install -r requirements.txt
|
||||
```
|
||||
|
||||
2. MySQL Install
|
||||
或者直接使用 conda 环境
|
||||
|
||||
In this project examples, we connect mysql and run SQL-Generate. so you need install mysql local for test. recommand docker
|
||||
```bash
|
||||
$ conda env create -f environment.yml
|
||||
```
|
||||
docker run --name=mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD=aa12345678 -dit mysql:latest
|
||||
```
|
||||
The password just for test, you can change this if necessary
|
||||
|
||||
# Install
|
||||
1. 基础模型下载
|
||||
### 2. 安装 MySQL
|
||||
|
||||
本项目依赖一个本地的 MySQL 数据库服务,你需要本地安装,推荐直接使用 Docker 安装。
|
||||
|
||||
```bash
|
||||
$ docker run --name=mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD=aa12345678 -dit mysql:latest
|
||||
```
|
||||
|
||||
### 3. 运行大模型
|
||||
|
||||
关于基础模型, 可以根据[vicuna](https://github.com/lm-sys/FastChat/blob/main/README.md#model-weights)合成教程进行合成。
|
||||
如果此步有困难的同学,也可以直接使用[Hugging Face](https://huggingface.co/)上的模型进行替代. [替代模型](https://huggingface.co/Tribbiani/vicuna-7b)
|
||||
|
||||
@ -71,24 +103,41 @@ cd pilot/server
|
||||
python llmserver.py
|
||||
```
|
||||
|
||||
3. Run gradio webui
|
||||
```
|
||||
python webserver.py
|
||||
运行 gradio webui
|
||||
|
||||
```bash
|
||||
$ python webserver.py
|
||||
```
|
||||
|
||||
4. 基于阿里云部署指南
|
||||
[阿里云部署指南](https://open.oceanbase.com/blog/3278046208)
|
||||
可以通过阿里云部署大模型,请参考[阿里云部署指南](https://open.oceanbase.com/blog/3278046208)。
|
||||
|
||||
# Featurs
|
||||
- SQL-Generate
|
||||
- Database-QA Based Knowledge
|
||||
- SQL-diagnosis
|
||||
## 感谢
|
||||
|
||||
总的来说,它是一个用于数据库的复杂且创新的AI工具。如果您对如何在工作中使用或实施DB-GPT有任何具体问题,请联系我, 我会尽力提供帮助, 同时也欢迎大家参与到项目建设中, 做一些有趣的事情。
|
||||
项目取得的成果,需要感谢技术社区,尤其以下项目。
|
||||
|
||||
<img src="https://github.com/csunny/DB-GPT/blob/main/asserts/wechat.jpg" width="400" margin-left="auto" margin-right="auto" >
|
||||
- [FastChat](https://github.com/lm-sys/FastChat) 提供 chat 服务
|
||||
- [vicuna-13b](https://huggingface.co/Tribbiani/vicuna-13b) 作为基础模型
|
||||
- [langchain](https://github.com/hwchase17/langchain) 工具链
|
||||
- [llama-index](https://github.com/jerryjliu/llama_index) 基于现有知识库进行[In-Context Learning](https://arxiv.org/abs/2301.00234)来对其进行数据库相关知识的增强。
|
||||
|
||||
# Contribute
|
||||
[Contribute](https://github.com/csunny/DB-GPT/blob/main/CONTRIBUTING)
|
||||
# Licence
|
||||
[MIT](https://github.com/csunny/DB-GPT/blob/main/LICENSE)
|
||||
<!-- GITCONTRIBUTOR_START -->
|
||||
|
||||
## Contributors
|
||||
|
||||
|[<img src="https://avatars.githubusercontent.com/u/17919400?v=4" width="100px;"/><br/><sub><b>csunny</b></sub>](https://github.com/csunny)<br/>|[<img src="https://avatars.githubusercontent.com/u/1011681?v=4" width="100px;"/><br/><sub><b>xudafeng</b></sub>](https://github.com/xudafeng)<br/>|
|
||||
| :---: | :---: |
|
||||
|
||||
|
||||
This project follows the git-contributor [spec](https://github.com/xudafeng/git-contributor), auto updated at `Sun May 14 2023 23:02:43 GMT+0800`.
|
||||
|
||||
<!-- GITCONTRIBUTOR_END -->
|
||||
|
||||
这是一个用于数据库的复杂且创新的工具,如有任何具体问题,请联系如下微信,我会尽力提供帮助,同时也欢迎参与到项目建设中。
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/wechat.jpg" width="320px" />
|
||||
</p>
|
||||
|
||||
## Licence
|
||||
|
||||
The MIT License (MIT)
|
||||
|
Before Width: | Height: | Size: 84 KiB |
Before Width: | Height: | Size: 243 KiB |
Before Width: | Height: | Size: 297 KiB |
Before Width: | Height: | Size: 560 KiB |
Before Width: | Height: | Size: 277 KiB |
Before Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 164 KiB |
Before Width: | Height: | Size: 323 KiB |
BIN
asserts/演示.gif
Before Width: | Height: | Size: 3.0 MiB |